www.dbeBooks.com - An Ebook Library

¢ nl

mPaI’HOno
ngertip CO

131?92!: [kg Worldwide Eh@ publisher o i

mmn@@
a\va@a"‘fD Fones

by Emily A. Vander Veer The Quick and Easy Way
to Remember JavaScript

A QlliCk Commands and Features

Reference for Step-by-Step Instructions
® ing Interacti
the Rest of Us!" [i; pegoc quichiy and
Easily — All New!

Practical HTML and
JavaScript Tricks and Tips

Table of Contents

Introduction: How to Use This Bookccccc... 1

Relating JavaScript to the World Wide Webcccccovvvinninnnnnnnn. 2
The INternetcccvvvvinviinininiii s
The World Wide Webc.ccoovvevinicniinininiiiicicnecincniniininne
JavaScript the Magnificent

Finding Exactly What You're Looking for in This Book............... 4

Understanding the Conventions Used in This Book.................... 5

Figuring Out What the Icons Mean ..., 7

Where to Go from Here........cc.oovveeeimieenienenencencnreceerccesennciennis 8

Part I: First Things First: Creating HTML
Objects to Work within JavaScript.............ccccecee 9

Creating a Meat-and-Potatoes Web Page ..o 10
Body section: <BODY> . .. </BODY>ccoceeevvvmrvnriniirnnnncnns 11
Header section: <HEAD> ... </HEAD>cccoovvririciicinicnnnennes 12
Interactive form: <FORM> ... </FORM>cccivvmvvenvvennnnnn 12
JavaScript script: <SCRIPT> . .. </SCRIPT>ccccoovvvirininnins 13
Web page: <HTML>. . .</HTML> ...ccccooovvvrmmininininiricecienne, 14

Inserting Form Elements into Your Web Pagec.coueuennee. 15
ActiveX component: <OBJECT> . .. </OBJECT>ccccecuene. 15
Graphic image: cccovivennninnnniiiceiees
HTML comment: <-. . .->
Frame: <FRAMESET> . .. <FRAME> . . . </FRAMESET> 18
Hypertext anchor: <A>, 19
Hypertext link: <A>o 20

Inserting Interactive Form Elements: <INPUT>c.c.ccocoeee. 21
BULTOM .ottt sse st e st e
Check box
fileUpload
Hidden........cccoovvvvviiivniecnnne
Password
Radio button
RESEL .ttt
SEIECT ...

SUDIMIL ..ot
TEXL eveiereeeeerrreetseseescrenesseessses et eesereaenes
TEXEATEA ...eeveereeieerieeresirernreeseestesesssetesnesnessessssiessessessnsseernensenss

Inserting a Java Applet: <APPLET> . . .</APPLET> 29

Mapping an Area: <MAP>. . .<AREA>. . .</MAP>cccoevinnenns 31

Plugging in a Plug-in: <EMBED> . .. </EMBED>ccccccoennn 32

Specifying Useful Web Page Features.............ccoeiieiecrnnenenne, 33
CGI program to call on submit: <FORM> . . .</FORM>.......... 34

Title for your Web page: <TITLE>. . .</TITLE>cc.c.c.... 34

JavaScript For Dummies Quick Reference

Part 1l: JavaScript Basicsccccccacueeccacneeee 35

About JavaScript SECUTILYcooveviverrrervrerrnerereerreesseesseeeseenns
Basics of the JavaScript Object Model
Built-in JavaScript data typesccoveevececeneeciecerecreeevnne.
Hierarchy of JavaScript objectsccceveevevrveccenrenrennnrenennnes
Utility ODJECES oooviiiiiiiiiiniiicctiicinicisectect e
Basic Punctuation and Syntax
Nested quotes.......cooceveeeerveennenne ettt e
PaITS oottt sttt ettt b s
Spelling and capitalization (Case)cccceeveeeeverreceecenerienenne.
TOP-AOWIL ..ttt a st vn et ne e aes
Comments (/*. .. %/ and //) coeevvrenernnecrencsresesesre e
Conditional Expressions: if . . . €lS€.....ccccccevvrrirnrenvenrenecerreernnene.

Operators
Assignment OPEratorsccoceccveveerenriceecrenerssecresneenesessenes
CompariSON OPEIALOYScccecererceerierseeceereeneeseseesseesesiassesssennes
Logical Operatorsccccvveveciveeinrecireeecereeeesercres e s e seeeseenns
Mathematical operators
Operator precedencecieverecennrenrernsensennens

Special OpPerators..........ccvcververieeieerenesrersesrensersersssessaens
TYPEOS et ettt ettt et et et aes
VORI ettt ettt n
StrING OPEraAtOrsS ..c.coeevieieieiereeeenieeeeeeeseeseeseeneeneas
Unary operatorscccceeeeverveeceennen.

Variablescccoceevevrcrinieneeneeceeeereeees

Accessing variablesc..cccoeveeirieriennennenencesnensinnne

Assigning values to a variable

Declaring variablescc.ccccoieveevrieenrecneeireneeneceenann.

Understanding variable scope

Part 11l: HTML Objects: The Heart of It All........55

About Objects
F=1 17l 110) (U OUUSTUUN

checkbox
document
fileUpload
form
frame
hidden
RESTOTY ettt ettt see e fee s e e e st sses e neees

Table of Contents

MALh ettt ettt et s s e s b e saa s bene
navigator 5
password

BEXEATEA ..ovvveerieneererierreceresnerreenseseessrersassseessessnesresinsessaersesssrsssorsesennns
WINAOW ..coveiieririeireeireeecreeerreeerersssessssersersesssnssssesesssssssnsessnsessasesssssns

Part IU: Data Types: Building Basic
JavaScript Objectscueeeeeeacreeeacccsnnaeeaans 13

AYTAY oottt ettt 74
DAL ..everirieriieniretereetentete e st sieeesee s e s te st et e sne b e b e saebesseenessneneas 75
FUNCHON ..ottt ete e s e e bn e ssessressanssnanes 77
OPLIOI .ottt et e e s te s b se st e e eseessestenen 77
SEIINEG covviveeciirreeeeerierie et eet e et es e etee st e tesee st e s s e st e sesste s s eesaeaseeses 79

About Using FUNCHONSocccvvvireviniiiiiiccceciececenececnenene 82
Calling a funCtionoccomveeermrrineirnicceieneeeteeseeenne 82
Defining a functioncccveenieneninnneesiirenreenceeenreseeeeneenes 83
Returning valuescocvceieccninininicnincninciccencanieaes 83

Built-In FUNCHIONScoveviriiniiiiiiciniiieccenicnince s 84
escape() — encodes a String.......cciiiiineneninnineneniennn, 84
eval() — evaluates a String......cccceeceeveeveeceeensivnneenecenreesecenenne 84
isNaN() — is nOt a NUMDEYc.covvcerrirreveirereciiicenncceneneenennes 85
parseFloat() — turns strings into floating-point
TIUIMDETS ..ottt seresessesne e ess e sesneneansaias 85
parselnt() — turns strings into integersccccoccevevvecrccenne 86
unescape() — decodes a Stringcoeevveveerivcniniiinenninns 87

Creating a Custom JavaScript Functioncccoceveeveevveninnnnee 88
With a fixed number of parameterscccceceeuvernvceencnnnes 88
With a variable number of parameters........c.cooeveeveeercnnennene. 88

Functions that Help You Create and Work with Objects........... 89
TIEW ..ueerirenrerentrretrsesonessenessentsseesscssesesessessnssssssensesersensonsseosssnesasons 89
THES 11overriereicsecceesrcs ettt se et st s st 90
WIEH e 90

Part Vl: Methods: How an Object Behaves91

MEtNOASivvieeircrnerecenrcteiteeereetse et eteee et as e nenan 92
ADS et 92
ACOS wveurererirerrrserreesseesessessssestssestssestssessesesenessostensasereassreeseressssasnne 93

JavaScript For Dummies Quick Reference

Close (OCUMENL) ..c..eureverirerenrrcrrnrieeereenerreseereeeeensresnsresnene 98

close (window)
1670) 1115 11 AU OO UROOU PN UUOROPE O SORRORR

fontsize
fOrwardcocvvveerreneneeneeeccreeecee s
getDate ...
BEIDAY et
getHours
getMinutes
GEMONEN ...t
getSeconds
GELTIIMNE .ottt e

getTimezoneOffSet ... 104
getYear

HAliCS covveeveerecrieeeecienene
javaEnabled()
|03 Ly OO OSSO PO UU T ORP PSP
lastIndexOf

open (document)
open (window)

Table of Contents

SELHOULS ...oviveeieeteceecrcereeree e ste e rae e be e s e s e ssaesnnes
SEIMINULES ...oevereeccrrecrrecerecrectrereeeernr e ecreeesrresssressseesansecnnes
SEEMONTN ..ot
SEESECONAS ..vveveviiiniiiciieiriccitecre vt estressreseseeessesssneesssssnses
SetTime ...oeveveveveeeenieeiinenns
setTimeout
SEEYEAY oovvvveveeeireeerreeecereecrreeerestresarresareenes

sqrt

TOGMTSEIING ...t rene
tOLOCAlESEIING ...oceeveiieriieiieeencct e
toLowerCase .
tOSEIING oot
toUpperCase
UTC et erereieretereaie e s ess s e e sve s essstesessesassssassasassesansesansensene
172 8 LT

writeln

action
AUNKCOLOT ...oveiimreireeieceeceteete ettt ssaes e nenens 126
APPCOAENAIME ..ot teeeesereeee e e nesnesnnens 127
APPIELS .o

appName
appVersion
AFGUIMENTS (oot eree e e aren e e e
DECOLOT ...ttt
DOTAEY ..ottt
checked (checkbox)cccvcneciniccnninnninicnnne

checked (radio)ccoevmvvicimviinivinininnncininennns

complete
cookie......... etereeeee et e et e b e b et e b e s e sEe e Rt r e e R e as e s e n e n et e bt an b et
defaultChecked (checkbox) :
defaultChecked (1adio)ccoveirerinieeninirenninniinnccscnneennions

JavaScript For Dummies Quick Reference

defaultSelected ...
AefaultStAtUS ...ooov e
defaultValue (password)
defaultValue (text)coovevevinienneinenncecceneeceeeeeenne
defaultValue (textarea)ccocovveviiceenennccnennncenennenes
AeSCrIPHION ..o

elements
embeds ...
enabledPlugincccoiieviniinnnnnnes
€NCOAING ..oevoveerrerereenrirenreeeceerreeeceeeeas
170070 (o) SN O ORR OSSP
filename

opener
OPLIONS ...coovvreivreveernnnns eretes et te ettt s e e bt e s a b s e r b e s s s s bbb s seanae
parent (frame)c.coceevevemeccniiiniiie et
parent (window)
PAtNNAIME ...
o0 (OO OO PSRRI
PIUZINS oottt

POTT oottt raeane e

ProtoColcuvvveereecrerieeeereeceeeenne

DPYOLOLYPE coceveeerreentrecrenctneeseneeseens

referrer

search (link)
search (10Cation)cccceevrcenneennscnincnn e
SEIECLEM ...t
selectedIndex (options)

JavaScript For Dummies Quick Reference

defaultSelectedoovvveveveecrerrcreeereeeee ettt reas
defaultStatuscccceveeeveeevrreenevennnns

defaultValue (password) ~
defaultValue (text)cooerevrerrnee .

defaultValue (textarea).......c..........
AESCIIPLION ..ot teesesse st eseseeseseesansannens

elements
embedscooveevveeerveenns
enabledPlugin
encodingccoeeeveerennen
FECONOT et ee et b besesebenesesesenesensssensesnsssaton
FIIEIIAIMNEvvviiveirriiiiercreeereesrereneeeerresessnessssesssseesseessnssssneessssanssns

..

opener
optionscccvceiinieennaens SOOI NN
parent (frame)ccoccoeveierrnieeeceeeee et
parent (window)
pathname.........ccccvveeeenneceerreeneenccennne.

Pl ettt ettt se e et sassns b aneraen
PIUGINS oottt
.16 o PP PUPON

protocol
PYOEOLYPE ..oevviiiriiiiiriiccirecterenrceesse e s sasebsasesnssnssnessesaannsanes
FEECITEY .ecevrereeieeirrcererereesr et eesessssesesesessesesenessssasssasenssenass
search (link)cccocevveevvcrevienienienesineerennennes

search (1ocation)ccceeceeereevceenueneenenne

SELECLEd ...ttt
selectedIndex (OPLIONS) ..cocvecveereevicieeieerenerrerceseeesrenseessneereene

Table of Contents

selectedIndex (select)
Self (frame)c.covevvererererevenininnsiescseenisiinseeseaeas

self (WINAOW) ..t
SQRTI_Z coevierieireermescrcirtesesrnsssssssssessssseessmsssssassesssssnens

SUIFIXES .eovververrieererieeesseseseessessesnessessessessessassassssssessesssssssssasss
target (fOrm)cocevevvevemenenencnencnnenes
target (link, area)

type
type (mimeTypes)
USETAZENL ..ovveeereiiniiniinreerreesseneseececnsnieieneas

VAIUE c.veerriieeerrenteereresseecsmessessiesnsssessasssessessasossesssesons

VHIKCOIOY .uvvirevienrerriecirensreeeerecessssesinesnessssssssssnsssesssnssnes
VSPACE .oovererrresosscsersesersssissssmsssessasesassasssrsssssssesssissssissssssassesissanssiscacs
width oo

window

Part Ulll: Event Handlerscccceeaaveeeceaee 149

ADOUL EVENLES «.oevvveeeeeierviirerreessessssnesssesessessssanssssnsessssssssassssssssssess
ONADOT L «.veiieneeiiitiieerreeereesseeesseesesesesresrrssessnnsessnes
ONBIUL ..ovveeeeieeeeeeirreeeeenveesesereesecssensssssunesssssnsasases
ONCHANGEvovereveirrrciiiriterire et tsasnens
ONICHICK oevveeveeereeeeessiieeesrssssaseesssaasssssenssssssnsssssassnesesssanaes

“ONETTOT covveviiiieiieeirveecreeeceecssnesiieestreennns
onFocus
onLoad
ONMOUSEOUL ...c.oveeeeeeeeieiieeerreessereraeeessesssessessesssssiasnnsssssnessssesassesssss
ONMOUSEOVET ...oeeeeeiereieeeesrrreessseessenssseessssesssesssrnssassssssosas
ONRESEL .ccevrrieeeeiiieeeeeeaaes
onSelectveeeeeineeeesinens
onSubmit
onUnload

" Part IX: Cool Things You Can Do
With JAVASCHPE ...eeueeravcacacscecessusniacssasasensasaes 103

Adding Multimedia to Your Web Page ... 164
COLOT cavreeeeeeeeecieteerestereraretesasaeseeserasasessnessasassssteneensansssssentonens 164
MOVING IMAZES ..cevvvvrnirrrererieaaseeesniisistiss et ses 165
PICLUTES .voerereiereeneereecrnrcinesinre s sesssaense e nnes 165

SOUNA cevevverereneeerssisesseressssesesesesesessesssessssessrsssssanssssessanssesessases 165
Calling Other Components from JavaScript........c.occoeeieveiennes 166
ActiveX COMPONENLES ..cccvvrviriiriririeriresireasisesmesisisrisnsssssssieass 166
Java applets
NetScape PlUG-NSccvivvriiiierieinreessecrcsiinsisseesssssssaees 168

JavaScript For Dummies Quick Reference

-

Creating Your Own JavaScript Objectsccocuvememeeerrerrerrannnnn. 169
Displaying Scrolling TeXtccccovmmrmerennrecrereetreeeeseeesessssnens 170
Displaying the Contents of Nested Objectscorveen...... 171
Formatting Money Fieldscccoooevevvereinnincee e eeenenenn, 173
Getting Started with a Bare-Bones HTML Template 176
Hiding JavaScript Source Code from Users..........c.cooeveruunnnnn... 176
From JavaScript-enabled browserso.oucvvvveevevennennnnn. 177
From non-JavaScript-enabled browsersccoeevean..nn.. 177
Interacting with COOKIESc.evevereevvvreiriienniereee e

Loading and Running a JavaScript Script
Looking at JavaScript Source Codecceevvvrcrireneeernrenn.

Making an Embedded Image Respond to User Events 180
Making Your Script Compatible with
Non-JavaScript-Enabled Browserscoooeeevveeeeervennnnnnnns 181
Providing Feedback to Users with Pop-Up Messages............... 181
Saving JavaScript FIlEsccocoiviveveeciiineneeese et e e sesssans 182
Saving JavaScript files as HTML source code...................... 182
Saving JavaScript files as textovveecevrreerireeeeeeeeeenenns 182
Using JavaScript to Calculate Values for HTML Tags 183
Validating User INPULocvureeeeivierircnee et seeerevetseseeeene 183
Validating before the form is submittedcooevvevenrunenn... 184
Validating one field at a timeo.oeeevveeiriecrreeeereeeeeaes 185
Web-Surfing: Creating Hypertext Linksccooeevvevevevsveereeenne. 187
Creating links between Web pagescccoooveeveecreniinnnni. 187
Creating links within a single Web pageccooevvrvnnenenee 188

Appendix A: Reserved Words.................cccuucc.. 189
Appendix B: Color Values............oewewarerencn 191
Glossary: Techie Talk..............cceeeeeeieeeieaceneaes 197

JHAEYceaeaaiacaaacecacciaaaaeeeeeeeeeeseeeseeeeeeeeeees 203

Y

s ~1 =~

i

How to Use This Book

You loved the book (JavaScript For Dummies, that is),
and you saw the movie six times. You want to use
JavaScript to add flash and interactivity to your Web
pages and, more than likely, you have a pretty good
idea of how you want to go about it. Still, you could
use a handy reference manual to keep nearby for
those times when you know what you want to do, but
can’t remember exactly how to do it. Well, you're in
luck! Because you're obviously reading this, congratu-
late yourself: You’ve found the most complete, down-
to-earth JavaScript reference available in this or any
other galaxy.

Unlike some reference works that are technically
correct but hopelessly detailed, this book offers tons
of working examples of how to do the things you really
want to do with JavaScript, like adding multimedia and
interactive input forms to your Web pages.

How to Use This Book

JavaScript For Dummies Quick Reference gives you a bare-bones
HTML primer that explains the subset of HTML statements that are
absolutely indispensable to a JavaScripter, followed by a compre-
hensive review of the JavaScript language itself and an in-depth
look at the JavaScript object model — every last object, property,
method, event handler, and function available in JavaScript.

Relating JavaScript to the World Wide Web

The World Wide Web (from now on out, called just plain Web) is an
extremely complex animal. There’s so much to know — from
communication protocols to browsers, from HTML to JavaScript to
Java, and other proprietary architectures and platforms. Unfortu-
nately, most of these technologies are described and documented
as though they exist in a vacuum, which leaves the average
intelligent person curious about the big picture: How does it all fit
together? If that’s a tree, what does the forest look like? In short,
what’s it all about, Alfie?

You really don’t have to be a rocket scientist to understand this
JavaScript stuff — all you need is an overview in plain English.
Here, then, is a birds-eye view of the role JavaScript plays in this
brave new world of Web application development.

The Internet

In the beginning, there was the Internet: A huge (and I mean huge)
conglomeration of networked computers. At first, you did have to
be a rocket scientist (or at least a computer scientist) to access
the Internet, because its interface was so cryptic and unfriendly to
humans. That all changed with the advent of the Internet protocols
that formed the World Wide Web.

The World Wide Web

The Web runs primarily on two protocols:

+ HTML (HyperText Markup Language): The language in which
Web pages are written

+ HTTP (HyperText Transfer Protocol): The special way of
communicating that lets computers like Web servers and Web
clients shuttle Web pages back and forth

A Web server is an industrial-strength computer, usually running
UNIX or Windows NT. Web servers hold peoples’ Web pages and
hang around waiting for requests. A Web client is a regular computer

p—
3

I!F_!f—;;"‘rﬁw

"

FEETE

P T R

How to Use This Book

AN,
QPR

~‘\pl\ﬂll‘,/

(usually a PC or a Macintosh) that has Web browser software
installed on it — browsers like Netscape Navigator or Microsoft
Internet Explorer that hunt and peck through cyberspace at your
command.

When you use your favorite Web browser to load a Web page,
such as the one denoted by the URL (Uniform Resource Locator)
http://www.dummies.com, your browser fetches the page from
wherever it is on the Web and brings it to your browser. Your
browser then interprets the fetched HTML file and displays it for
you in living color.

JavaScript the Magnificent

Where does JavaScript come in? JavaScript is a scripting language
designed by Netscape Communications. A scripting language is a
limited programming language designed to extend the capabilities
of another application. The JavaScript language is an extension to
HTML and lets you create interactive Web pages. With JavaScript-
enabled Web pages, users can press buttons, type text, perform
calculations, and call Java programs or plug-ins — without a whole
lot of programming effort. (Other ways exist to create interactive
Web pages, notably by using server-side scripting by means of CGI,
or Common Gateway Interface programs. But I'm here to tell you,
you're back to needing a PhD in astrophysics when you start
dabbling around with CGL.)

At the time of this writing, JavaScript is supported by Netscape

" Navigator 3.0 and Internet Explorer 3.0. (I say that these browsers

support JavaScript because they have JavaScript interpreters built
into them.) Yet, while Netscape Navigator and Internet Explorer
both support JavaScript, their implementations differ slightly. I
alert you throughout the book when I cover topics that the two
browsers handle differently. To be on the safe side, you should
always test your JavaScript-enabled Web pages on both Web
browsers before you send them out into the big wide world.

The JavaScript implementations on various Web browsers have
been known to change slightly from version to version (for
example, from Netscape Navigator 2.0 to 3.0) — so you can
probably expect this situation to continue in the future. What this
fact means to you as a JavaScript author is that it’s a good idea to
test your JavaScript-enabled Web pages on the new Web browser
versions as soon as they become available. You want to make sure
that the Web pages that you created for the older Web browser
still work on the newer version. After all, if users attempt to load
your Web page and it tanks, you're the one they’ll blame!

' How to Use This Book

Finding Exactly What You're
Looking for in This Book

This book is organized so that you can find information quickly,
either by browsing through the main sections (described in the
following paragraphs) or by looking through the alphabetized
Table of Contents.

Part I, “First Things First: Creating HTML Objects to Work within
JavaScript,” presents the basic HTML statements that you need to
create a basic Web page from scratch. Many of the statements create
the actual HTML elements, or objects, which you can change, look at,
display, and otherwise manipulate with JavaScript statements.

Part I, “JavaScript Basics,” presents the JavaScript object model
and shows you how to reference each object in the object hierar-
chy. This part also introduces the JavaScript keywords, explains
how you can use each keyword, and describes the syntax you
need to follow to create valid JavaScript statements.

Part Ill, “HTML Objects: The Heart of It All,” gives you a blow-by-
blow analysis of all of the HTML objects available to you in
JavaScript (in other words, the ones you learn how to create in
Part I). This part, together with parts IV, V, VI, VII, and VIII, provide
you a complete JavaScript language reference.

Part IV, “Data Types: Building Basic JavaScript Objects,” shows
you how to put the most basic JavaScript objects into your Web
pages. This part covers the JavaScript objects that you're likely to
include in almost every script you're likely to write — objects like
Array, Date, Function, Option, and String. This part shows you the
correct syntax for including basic objects in your scripts and even
gives you examples of working JavaScript code.

Part V, “Functions,” lists all of JavaScript’s built-in functions,
describes how to use functions to create instances of objects, and
clues you in on how to custom-design your own functions.

Part VI, “Methods: How an Object Behaves,” shows you all you'd
ever want to know about methods. This part gives you a rundown
of every method available to you in the JavaScript library, demon-
strates the proper way to call each method, and gives you easy-to-
understand code examples and explanations.

Part VII, “Properties (Object Data),” is an exhaustive listing of the
items that represent an object’s data — its properties. This part
tells you how to access and modify object properties and relates
those properties to their corresponding HTML tag attributes.

|

|

)

disk

=
‘»

e e i el Lo b Leed el bl el ey e

How to Use This Book

Part VIII, “Event Handlers,” shows you how to use these special
attributes to specify JavaScript statements (typically you’ll specify
just one statement — a function call) for the browser to invoke
automatically whenever an event occurs.

Part IX, “Cool Things You Can Do with JavaScript,” shows you how
to do all the stuff you really want to do with JavaScript — things
like adding multimedia action to your Web pages, creating interac-
tive controls, validating user input, and calling other (non-
JavaScript) components from your JavaScript scripts. In this part,
you find instructions for everything from loading a JavaScript-
enabled Web page (which is dead-easy) to interacting with cookies
(a considerably more advanced topic).

Appendix A, “Reserved Words,” briefs you on the JavaScript
keywords that you need to avoid when you name your variables
and functions.

Appendix B, “Color Values,” contains a list of predefined shades
that you can use to color the background (or any other part) of
your Web page.

The glossary, called “Techie Talk,” appears at the very end of the
book. You can check this part to look up words you’re not familiar
with, or that you’'ve come across before but have forgotten.

Understanding the Conventions
Used in This Book

HTML and JavaScript code appear in this book in monospaced
font, like this line of HTML code:

<TITLE>My First JavaScript-Enabled Web Page</TITLE>

Make sure that you follow word-for-word the syntax in the examples
(that is, the spacing, capitalization, and spelling). Some variations
may work, but some won’t — and consistency pays big dividends
in reading your code later. The exception to this syntax rule
relates to italicized words, which act as placeholders for other
values, which you can substitute in your actual code. For example,
in the following line of JavaScript code, you can replace
myCatName and "Scooter Pie" with other values, but you need
to type var exactly the way it appears:

var myCatName = “Scooter Pie”

|
-

How to Use This Book

|
1.
L

If you need to type something in, the directive appears in boldface, HTML Syntax Element Meaning

like this:
The ellipses (...) mean that some tags require
multiple attribute-value pairs. For example, the
INPUT tag definition may include
TYPE="BUTTON" and

NAME="myButton"

[some text] Some tags require associated text; for example,
the OPTION tag (which defines an entry in a

Type return.

i

I also use boldface to highlight lines of code I refer to in the text.

Due to the narrow margins of this book, sometimes code examples
may wrap around from one line to another. JavaScript doesn’t

-

require a line continuation character, so you can copy the code
exactly as it appears, unless the break occurs between two quotes,
like this:

SELECT list box) requires you to specify some
descriptive text for the entry to display to the
user.

]

1

var favoriteActivity = "sleeping late on

. </TAG-NAME> Some tags require a closing tag, like this:
Sundays"™ // Warning! Invalid break

<TITLE>Some title</TITLE>

B

And finally, because JavaScript scripts don’t exist in a vacuum
(you must integrate your JavaScript scripts into HTML files), you
see two different types of coding statements in this book:

Figuring Out What the lcons Mean

To make your life easier (as it relates to JavaScript, at least!), I
include a few icons to give you a heads-up on practical scripting-
related tidbits:

4 HTML statements

4 JavaScript statements

o REF
§ %g‘ This icon indicates a handy cross-reference to some other . . .For

The conventions listed in the preceding paragraphs are all you T
- Dummies book that explains the related topic in lots more detail.

need to follow to create customized, working JavaScript state-
ments on your own computer. HTML statements, however, tend to
be a little more daunting until you're familiar with them. The
following code shows the correct syntax for an HTML statement,
and the following table explains the HTML elements in more detail. L
Here’s how you make sense of HTML syntax:

{TAG-NAME [ATTRIBUTEL="VALUE"]...1>[some text] r
[</TAG-NAME>]

Tip
This icon alerts you to handy tricks and techniques that can save

you time, hassle, and many, many tufts of hair.

N Next to this icon are common pitfalls, bugs, and assorted “uh-ohs”
6 to look out for.

This icon points out items that don’t work the way you’d expect

HTML Syntax Element Meaning - them to — a touch of illogic in the normally logical world of
computerdom.
< Angle brackets (<>) surround a tag name. |
TAG-NAME Tag names are HTML keywords like TITLE, This icon marks a faster way that you might choose to accomplish
SCRIPT, and INPUT. - a task — saving you valuable time and keystrokes.
[Square brackets surround items that are 1§ ’

optional (depending on the tag name that you're
working with).

ATTRIBUTE Attributes are associated with specific tag
names. For example, the TYPE attribute is
associated with the INPUT tag.

="VALUE" ' Some attributes require values. For example,
the TYPE attribute of the INPUT tag requires
a value which could be BUTTON, RESET,
SUBMIT, or some other predefined value.

This icon flags Web sites that you can visit for more in-depth
information on a related topic.

o

Rejoice when you see this icon! It indicates real-live, working
JavaScript/HTML source code.

I

'3

How to Use This Book _

e

Where to Go from Here

Because JavaScript gives you instant feedback, it’s really fun to
use (okay, it’s fun compared to other programming languages —
maybe not compared to a two-week beach vacation!). To get the
most out of this book, you may want to try creating a Web page
from scratch and then adding to it a piece at a time as ideas occur
to you. Take the afternoon off, kick the dogs out, and experiment
with some of the suggestions in this book. If you get stuck, just flip
to the section that covers whatever’s giving you a hard time, copy
the example you’ll find there, and modify it until it’s just the way
you want it. Creating incredible Web pages with JavaScript isn’t
illegal, immoral, or fattening, so what are you waiting for? Go for it! —

First Things First:
Creating HTML
Objects to Work
within JavaScript

To get some troubleshooting tips if you get an error message JavaScript is an ultra-pared-down, ultra-easy program-
on your JavaScript code, check out the JavaScript For Dummies ming language specifically designed to make Web page

Quick Reference page on the Dummies Web site at http:// elements interactive. An interactive element is one that
www.Dummies.com responds to user input — for example, a push button

that causes something to happen when a user clicks
on it, or a text field that automatically checks the
accuracy of text that a user types in. In order to make
elements interactive, though, the elements first have
to exist. For elements to exist, you have to create
them — which you can do easily with HTML state-
ments like the ones in this part.

%

=

In this part . . .
v Creating a basic, no-nonsense Web page in HTML

g

v Adding elements to your Web page

v+ Connecting your Web page to a server-side
CGI program

=
[
LY

Creating a Meat-and-Potatoes Web Page Creating a Meat-and-Potatoes Web Page

Y
- e

When you finish testing your Web page and it looks absolutely
perfect, you'll probably want to share it with the world — which
requires giving your document file (and perhaps some cash) to a
Web server administrator. Creating Web Pages For Dummies, by

CR,
%
-
ey
xa‘é'

Creating a Meat-and-Potatoes Web Page

Creating a Web page is a fairly simple process, as you can see in E

this overview. (The rest of this part shows you exactly how to
implement each phase of the overview.)

First, you need to create an HTML document file called
someFile.html (or, if your system doesn’t support long filename
extensions, name your file someFile.htm). You can use which-
ever text editor you're most comfortable with to create the HTML
file, such as WordPad, BBEdit, the text editor that’s included as
part of Netscape Navigator Gold, or even your favorite word
processor package — as long as the program lets you save plain
text. The HTML document that you create should have the following
sections:

Bud Smith and Arthur Bebak (published by IDG Books Worldwide,
Inc.), contains a whole chapter describing free () and easy ways to
get your page up and running on the Web.

Body section: <BODY> . . . </BODY>

Typically, the body of the document is where most of the HTML
statements live — smack-dab between the <BODY>...</BODY>
tag pairs.

To define a body section in HTML, use this tag pair:
<BODY>...</BODY>

4+ The overall document section (required): In order for the
HTML interpreter to recognize that your document is an =
HTML file and not just any old file, the document file’s first
line must contain the beginning <HTML> tag, and the last line
must contain the ending </HTML> tag. All the other HTML tags
and JavaScript statements you decide to incorporate into your
Web page are optional — but whichever tags or statements you
include must appear between the <HTML> . . . </HTML> tags.

To access that body section in JavaScript, use this identifier:
document

The <BODY>...</BODY> tag pair, itself, gives you the opportunity
to customize the colors that your Web page displays.

You can change the color of any of the items that appear in the
Description column of the following table to any of the color
values shown in Appendix B.

4 The header section (optional): If your document has a header -
(such as “Creating a Meat-and-Potatoes Web Page,” which you Setting Colors in HTML Description Accessing Colors
see at the beginning of this section), the header immediately ‘ in JavaScript
follows the beginning <HTML> tag. The header is bounded by ‘ —n N
the opening <HEAD> tag and the closing </HEAD> tag. You . BGCOLOR="chartreuse" Background page color ~ document.bgColor
must place some elements inside the header, such as your Web | TEXT="blue" Foreground (text) color document.fgColor
page’s title. Other elements — for example, a JavaScript LINK="yellow" Link color before it's document.linkColor
script, which is identified by the <SCRIPT> tag — may or may n clicked
not take up residence in the header. ALINK="white" Link color as it’s document.alinkColor
4+ The body section (technically optional but practically - being clicked
required!): You could create a document that doesn’t contain VLINK="black" - Link color after it's document.vlinkColor
a body, but it would be pretty boring! All the interactive form B been clicked
elements that you become familiar with in this part must |

Here’s how the code in the preceding table might look when you
set up the body of an HTML document:

PpMPLe <HTML>

appear between the <BODY>...</BODY> tags in order to be
recognized by the HTML interpreter. .

e See also “Getting Started with a Bare-Bones HTML Template,” in

Part IX, which contains a mini-HTML file with the document,
header, body, and script tags already in place.

After you create an HTML document file, you can load the page in
any JavaScript-enabled Web browser (for example, Netscape Naviga-
tor or Microsoft Internet Explorer) and view your new Web page.

-
=

i

{
w B B B B A S A e an A AR A

<BODY
BGCOLOR="someColor"
TEXT="someColor"
LINK="someColor"
ALINK="someColor"
VINK="someColor">

Creating a Meat-and-Potatoes Web Page

‘1

Creating a Meat-and-Potatoes Web Page

Most of your HTML code, including code for your
interactive form, goes right here.

</BODY>
</HTMLS

Header section: <HEAD> . . . </HEAD>

Because the JavaScript interpreter (the software bundled with
some Web browsers that enables the browser to recognize
JavaScript statements) begins reading the HTML code at the top of
each file and works downward, the <HEAD> tag should appear near
the top of the file:

<HTML>

<HEAD>

Statements placed here are interpreted as soon
as the Web page is Joaded.

</HEAD>

The bulk of your HTML statements, including your
body section, goes here.

</HTML>

Take advantage of the organizational convenience of the header
and body sections of an HTML document. For example, if you
make a habit of putting all your JavaScript function definitions in

the header section, you can be sure that your functions will be
available to the rest of your Web page.

Interactive form: <FORM> . . . </FORM>

The <FORM>...</FORM> tag pair is arguably one of the most
important tags you can use, JavaScript maven fantastique. The
<FORM> tag surrounds the heart of the JavaScript-enabled Web
page: the interactive form. A form is used to gather input from
users and to send, or post, form data to a server for additional
processing. You always define forms inside the <BODY>. ..
</BODY> section.

To define a form in HTML, use this tag pair:
<FORM NAME="myForm">...</FORM>

To access that form in JavaScript, use this identifier:
document.myForm

You must place the tag for any form element you choose to include
in your Web page, be it a button, a list box, a text field, or what-
ever, between the <FORM>. . .</FORM> tags, as shown in the
following table:

' ‘
i
e

|

—
(]

) 2

)

&

%,

@;
EY)

§

- II.I - . - - e e -

|

Tag Syntax for <FORM> Explanation

<FORM Opening <FORM> tag

NAME="formName" Internal name of form (for coding
purposes)

[TARGET="windowName"] Window to display server response
(optional; default is current window)

[ACTION="serverURL"] URL where form data is sent when
the user submits the form (optional)

[METHOD=GET | POST] Data send method is either GET or

POST; GET is default (optional)

[ENCTYPE="encodingType"] Special data encoding scheme, if any
(optional)

[onSubmit="handlerText"]> Code to invoke when form is
submitted (optional)

A Put all your form elements here
</FORM> Closing <FORM> tag

See also “Inserting Form Elements into Your Web Page,” later in
this part, which defines form elements like buttons, text fields, and
list boxes.

You may never take advantage of all the stuff in the syntax; at
least, not until you become an expert! To get you started, here’s a
common, everyday example of the syntax for an interactive form:

<FORM NAME="myForm">

CINPUT TYPE="button" NAME="calculatePrice"
VALUE="Calculate Now!"
onClick="calculatePrice()">

</FORM>
The syntax for HTML in general, and the <INPUT> tag in particular,
can be a little intimidating if you’re not familiar with it. For the

whole scoop on HTML syntax, check out HTML For Dummies, 2nd
Edition, by Ed Tittel and Steve James.

JavaScript script: <SCRIPT> . . . </SCRIPT>

The <SCRIPT>...</SCRIPT> HTML tag pair lets you insert a
JavaScript script into your Web page. (Be aware that JavaScript
isn’t the only scripting language that you can specify; that’s why
the <SCRIPT> tag has an associated LANGUAGE attribute.) You can
place a JavaScript script inside the header or the body section of
your Web page, and you can insert as many scripts as you want.
(See also Part IX for some cool script ideas.)

e,

;

4
P
=
§
Q

)

é—BEFqu

EY)

Creating a Meat-and-Potatoes Web Page

Because JavaScript is an object-based (not object-oriented)
language, the JavaScript code you write will be rife with references
to entities such as objects, methods, and properties. Unfortunately,
due to space constraints, this book doesn’t contain a discussion of
object-based programming. If you're interested in object-based
programming, concepts, and techniques (especially with respect
to JavaScript), pick up a copy of JavaScript For Dummies, by Emily
Vander Veer (that’s me, by the way).

Tag Syntax for <SCRIPT> Explanation

<SCRIPT Opening <SCRIPT> tag

[LANGUAGE="JavaScript"] Scripting language (optional but
recommended; JavaScript is the

default)

[SRC="fileName.js"1> JavaScript source filename (optional)

Your JavaScript statements go here
unless you specify a value for SRC

</SCRIPT> Closing </SCRIPT> tag

Here’s an example of the <SCRIPT> tag in action, just to get you
started:

<HTML>

{SCRIPT LANGUAGE="JavaScript">

</SCRIPT>

</HTML>

Make sure that you don’t place HTML statements inside the
<SCRIPT>...</SCRIPT> tags. The only statements that the
JavaScript interpreter considers valid between these two tags

are JavaScript statements — any other type of statement causes
a syntax error.

Web page: <HTML> . .. </HTML>

Some browsers may load your HTML document file just to find out
if either or both of these tags are missing. Technically, though, the
Web browsers don’t have to — and there’s no guarantee that
they’ll keep doing so in the future. So, to be on the safe side,
always include the <HTML>. . .</HTML> tag pair in your HTML
document file. The beginning tag should be the first line in your
file, and the ending tag should be the last line, as shown in the
following example:

<HTML>

Place any HTML or JavaScript statements that you
choose to include in your HTML file between
these tags.

</HTML>

|

)

T

_h

Inserting Form Elements into Your Web Page

Inserting Form Elements into Your Web Page

TIP

All the elements described in this section are form elements and,
because they're part of a form, they must be defined between the
<FORM>...</FORM> tags which, in turn, must be defined between
the <BODY>...</B0ODY> tags. Read on for specific examples.

ActiveX component: <OBJECT> . .. </OBJECT>

ActiveX components are currently compatible only with Internet
Explorer’s version of JavaScript, but rumor has it that ActiveX
compatibility is coming soon to Navigator.

To embed an ActiveX component in an HTML document, use this
tag pair: <OBJECT>...</0BJECT>

To access that ActiveX component in the Internet Explorer
implementation of JavaScript, use this identifier:
document.myForm.myActiveXId

The ink on the <OBJECT> tag specification isn’t even close to
being dry at the time of this writing, which means that the infor-
mation in this section may have changed slightly by the time you
read this. To keep up with the official COBJECT> tag goings-on,
keep an eye on the following URL:

http://www.w3.0rg/pub/WWW/TR/WD-object.htmlffobject

Tag Syntax for Embedded Explanation
ActiveX Component
<OBJECT Opening <OBJECT> tag

CLASSID="classid"
ID="componentId"

Classid of the component

Internal name of component for
coding purposes

[HEIGHT="pixels" | "value"%] Height of the component, in
pixels or as a percentage of the
window height

[WIDTH="pixels" | "value"%] Width of the component, in

pixels or as a percentage of the
window height

[HSPACE="pixels"] Horizontal space between left
and right sides of the compo-
nent and left and right edges of

the window, in pixels

(continued)

)

TP

Inserting Form Elements into Your Web Page

Tag Syntax for Embedded
ActiveX Component

Explanation

[VSPACE="pixels"]

Vertical space between top and
bottom of component and top
and bottom edges of the
window, in pixels

[ALIGN="position"1>

Specifies alignment of image

You can repeat the following optional section as many times as necessary:

[<PARAM

Opening <PARAM> tag

NAME="parameterName"

Name of parameter to pass to
component

VALUE="parameterValue">]

Value to pass to component

[</PARAM>]

Closing <PARAM> tag

</0BJECT>

Closing </0BJECT> tag

The following code embeds an ActiveX component whose purpose
in life is to load a Web page inside a Web page (in this example, the
IDG Books Worldwide home page). This code then flips the Web
page around and around inside a skinny little horizontal window.

<OBJECT

ALIGN=CENTER
CLASSID="clsid:1a4da620-6217-11cf-be62-
0080c72edd2d"
WIDTH=650 HEIGHT=40 BORDER=1 HSPACE=5

ID=marq

uee>

<PARAM NAME="Scrol1StyleX" VALUE="Circular">
<PARAM NAME="Scrol1StyleY" VALUE="Circular">
<PARAM NAME="szURL" VALUE="http://

www . idgbooks.com">

<PARAM NAME="ScrollDelay" VALUE=100>
<PARAM NAME="lLoopsX" VALUE=->

<PARAM NAME="LoopsY" VALUE=->

<PARAM NAME="Scroll1PixelsX" VALUE=0>
<PARAM NAME="ScrollPixelsY" VALUE=30>
<PARAM NAME="DrawImmediately" VALUE=1>
<PARAM NAME="Whitespace" VALUE=0>
<PARAM NAME="PageFl1ippingOn" VALUE=1>
<PARAM NAME="Zoom" VALUE=100>

<PARAM NAME="WidthOfPage" VALUE=640>
</0BJECT>

Graphic image:

To embed an image in HTML, use this tag:

To access that image in Navigator’s implementation of JavaScript,
use this identifier: document .myFform.myImage.

.

(—

V
11

|
.. g

M~ mm
. -

"1
- o

ik

Inserting Form Elements into Your Web Page

You can embed any image file into a Web page by using the
tag. As you may expect, the position of the embedded image is
determined by the position of the statement in the HTML
file. For example, if you define a push button, an embedded image,
and a set of radio buttons, in that order, that’s the order in which

they appear on your Web page.

Tag Syntax for

Explanation

<IMG

Opening tag

NAME="1imageName"

Name of image for internal
coding purposes

SRC="1ocation"

URL of image to load

[LOWSRC="Tocation"]

URL of alternative low-resolution
version of the image

[HEIGHT="pixels" | "value"%]

Height of image, in pixels or as a
percentage of window height

[WIDTH="pixels" | "value"%]

Width of image, in pixels or as a
percentage of window height

[HSPACE="pixels"]

Horizontal space between left
and right sides of the image, and
the left and right edges of the
window, in pixels

[VSPACE="pixels"]

Vertical space between top and
bottom of image and top and
bottom edges of window, in
pixels

[BORDER="pixels"]

Width of the image’s border, if
any, in pixels

[ALIGN="position"]

Specifies alignment of image

[ISMAP]

Whether the image is a server-
side map

[USEMAP="1ocationj#mapName"]

Whether the image is a client-
side map

[onAbort="handlerText"]

Code to execute when a user
aborts an image load

[onError="handlerText"]

Code to execute when an error
occurs on image load

[onLoad="handlerText"1>

Code to execute on image load

Most of the attributes are optional; only a few are strictly neces-
sary, as you can see in the following example:

<IMG NAME="dogImage"
SRC="images/dalmation.gif"
ALIGN="MIDDLE">

‘xﬂml 6,

sés_aEF%%

TIP

Inserting Form Elements into Your Web Page

See also Part IX for ideas on cool ways to adorn your Web pages
with the tag and other HTML multimedia morsels.

HTML comment: <!- . .. ->

Try to strike a balance between over-commenting and not adding
enough comments to your code. Over-commenting can actually
make your code harder to read; on the other hand, not adding any
comments at all makes other HTML or JavaScript authors have to
guess what your code is doing (and why the coding is doing it!).

<HTML>

<1° This HTML file was created by Juan Valdez,
. 01/01/97

</HTML>

Two types of comments exist: HTML comments, which are demon-
strated in the preceding code, and JavaScript comments, which
look like this: // or /* */. These comments are not interchange-
able. If you try to use an HTML comment inside a JavaScript script,

you get an error. If you try to use a JavaScript comment inside an
HTML tag, your JavaScript comment shows up on the Web page!

For a good example of proper comment usage, see also “Getting
Started with a Bare-Bones HTML Template,” in Part IX, or the
“Comments” section in Part II.

Frame: <FRAMESET> . .. <FRAME> . ..
</FRAMESET>

A frame is a special kind of window. You can have several frames
per “regular” window, and a user can scroll each frame independently.
Each frame can also be associated with a separate URL. What fun!
What possibilities! (And — potentially — what confusion!)

To create a frame in HTML, use these tags:
<FRAMESET>...<FRAME>...</FRAMESET>

To access that frame in JavaScript, use this identifier: frames[0]

In the preceding JavaScript identifier, 0 is a number representing
the order in which the frame was defined in the HTML code. The
first frame is represented by 0; the second, by 1; the third, by 2;

and so on.

~4.”
i

—

‘ _ [
r W

—

i

._Mﬁ,

-
5

Inserting Form Elements into Your Web Page

§

TP

Tag Syntax for a Frame

Explanation

<FRAMESET

Opening <FRAMESET> tag (group
of frames)

ROWS="rowHeightList"

Comma-separated list of values for
row height

COLS="columnWidthList"

Comma-separated list of values for
column width

[onBlur="handlerText"]

Code to invoke when frame is blurred
(optional)

[onFocus="handlerText"]

Code to invoke when frame receives
focus (optional)

[onLoad="handlerText"]

Code to invoke when frame is loaded
(optional)

[onUnload="handlerText"1>

Code to invoke when frame is
unloaded (optional)

[<FRAME

Single <FRAME> tag (optional but
recommended)

SRC="TocationOrURL"

URL of the document that appears in
this frame

NAME="frameName">]

Internal name of frame (for coding
purposes)

</FRAMESET>

Closing </ FRAMESET> tag

Here'’s an example of code that defines two frames:

<HTML>

CHEAD><TITLE>Frames Example</TITLE></HEAD>
<FRAMESET ROWS="50%,50%" COLS="40%,60%">

{FRAME SRC="framconl.html" NAME="framel">
(FRAME SRC="framcon2.htm1" NAME="frame2">

</FRAMESET>
</HTML>

Hypertext anchor: <A> . . .

An anchor is a piece of text that uniquely identifies a spot on a
Web page. After you define an anchor, you (or any other HTML

author) can link to it.

To define an anchor in HTML, use this tag pair: <A>. . .

To access that anchor in JavaScript, use this identifier:

document.1links[0]

In the preceding JavaScript identifier, 0 is a number representing
the order in which the anchor was defined in the HTML gode. The
first anchor is represented by 0; the second, by 1; the third, by 2;

and so on.

Inserting Interactive Form Elements: <INPUT>

Inserting Form Elements into Your Web Page r

You may notice that the <A>. . . tag pair is used for both
anchors and links. If you want, you can use one <A>. . . tag
pair to define a single piece of text that’s both a link and an anchor.

Many of the link’s attributes are optional. You can use them all if
you're feeling frisky, but the following is a good example of all
that’s really necessary to get the job done:

[o Link to the IDG
Tag Syntax for an Anchor Explanation @ Dummies Press Web Site
<A Opening <A> tag r ne When you move your mouse pointer over the link, the value
NAME="anchorName"> Name of anchor to which the links refers o @ specified for the HREF attribute (in this case, it’s "http://
anchorText Text to display at the anchor site www.dummies.com") appears in the status line at the bottom of
A Closing ta r the browser. You don’t have to do anything special for this value
g g N to appear — the HTML interpreter does it for you automatically.

Here’s a down-and-dirty anchor definition:
Table of Contents

Inserting Interactive Form Elements: <INPUT>

TIP

‘nb -« To define an interactive input element in HTML, use this tag:
Hypertext link: <A> . .. CINPUT NAME="myInputElement"...>
Hypertext links (or just plain links) are at the heart of the Web’s
usefulness. You can use links to connect and organize multiple
pages of your own, to connect your pages with other Web pages,
or both. Technically, a link is a piece of text (or an image) that
loads another Web page when you click on it. (A link sometimes

loads a specific spot, or anchor, on the other Web page.)

To access that element in JavaScript, use this identifier:
document.myForm.myInputElement

ARNIY o .
Ve All the elements in this section are form elements and so must be

defined between the <FORM> . . .</FORM> tags.

TP

The interactive elements that you can create in JavaScript are
actually HTML elements, with one very important difference:
JavaScript lets you add event handlers (onC1ick, onChange,
onBlur, and so on) to elements so that the elements can respond
to user interaction (see also Part VI). You can make several
different types of input elements interactive with JavaScript:

To define a hypertext link in HTML, use this tag pair: <A>...

To access that link in JavaScript, use this identifier:
document.1inks[0]

In the preceding JavaScript identifier, 0 is a number representing
the order in which the link was defined in the HTML code. The first
link is represented by 0; the second, by 1; the third, by 2; and so on.

F 1 s B rs s

Input Element Explanation
Tag Syntax for a Link Explanation TYPE="button A customizable push butto‘n ‘
- TYPE="checkbox" Grouped check boxes (which allow multiple
<A Opening <A> tag selections)
HREF="TocationOrURL[#fanchor]" ;J[I]%Cth?(:O(ilf_:lfgopriate) TYPE="file" A control that lets users browse and choose files
i : .. .

[TARGET="windowName"] Window to load linked page ' TYPE=hidden” A text element that usars can't see :

into (optional) TYPE="password A text element that displays characters as asterisks
[onClick="handlerText"] Code to invoke when a user - TYPE="radio" Grouped radio buttons (which restrict users to one

clicks the link (optional) . selection)
[onMouseQut="handlerText"] Code to invoke when mouse — TYPE="reset" Predefined button to reset form values

moves off the link (optional) - <SELECT> Configurable (single or multiple selection) list box
[onMouseOver="handlerText"]> Code toinvoke when mouse ' TYPE="submit" Predefined button to submit form values

moves across the link

(optional) - ; TYPE="text" Single line text input field
TinkText Text to display at link site - ‘ <TEXTAREA> Multiple line text input field
<IA> Closing tag]

~“pJ\MI‘,/

Inserting Interactive Form Elements: <INPUT>

The <SELECT>and <TEXTAREA> elements are input elements, too
but they're defined a little differently than the others. (Go figlire) ,
Instead of identifying values for the TYPE attribute of the <] N PU.T>
tag, they have tags all their own:

{SELECT>...</SELECT>
STEXTAREA>...</TEXTAREA>

Button
A button is a clickable push button on an HTML form.

Tag Syntax for a Button Explanation

<INPUT Single <INPUT> tag

TYPE="button" Specifies the kind of input control

(button)

NAME="buttonName" Internal name of button (for coding

purposes)

VALUE="buttonText" Text to display on face of button

[onClick="handlerText"1> Code to invoke when a user clicks the

button

Here’s a real-life example:

<INPUT TYPE="button" NAME="1infoButton" VALUE="C]17
Here for Info" onClick="displayInfo()"> .

Check box

A check qu is a toggle switch control. When users click a check
box, they either check it (turn it on) or uncheck it (turn it off).

Tag Syntax for a Check Box
<INPUT
TYPE="checkbox"

Explanation

Single <INPUT> tag

Specifies the type of control (check
box)

NAME="checkboxName" Internal name of check box (for coding

purposes)

VALUE="checkboxValue" Value returned to the server when the

form is submitted

[CHECKED] Specifies initial display marked as

checked (optional)

Code to invoke when check box is
clicked (optional)

LonClick="handlerText"1>

textToDisplay Descriptive text to display next to

check box

i II‘ -

?A ’—_—_i
i i
i ! _—
- B

Inserting Interactive Form Elements: <INPUT>

SAMPLe

“§RN10/

§

Here’s how you might go about creating a check box:

<INPUT TYPE="checkbox" NAME="classicalCheckbox"
VALUE="checkedClassical"
onClick="showClassicalTitles()"> Click here if
you like classical music.

fileUpload

A fileUpload element allows users to browse the file directories on
their own machine and choose a file. Within a JavaScript script you
can access the name of the chosen file with the fileUploadName.
value, which you can then use however you see fit.

The fileUpload element is available only for Netscape Navigator 3.0
at the time of this writing.

Explanation

Single <INPUT tag

Specifies the type of element (file)
Specifies the name of the element

Tag Syntar for fileUpload
<INPUT

TYPE="file"
NAME="fileUploadName">

Here’s what the definition of a fileUpload element looks like:
<INPUT TYPE="file" NAME="myFileUpload">

Hidden

A hidden element is an input text field that doesn’t appear
on-screen. Hidden elements are usually used to store programmer-
calculated values (behind-the-scenes program stuff) that get sent
to the server when the user submits a form.

Explanation
Single <INPUT tag
Specifies the type of element (hidden)

Internal name of hidden element
(used in coding)

Initial value of hidden object
(optional)

Tag Syntax for a Hidden Element
<INPUT

TYPE="hidden"
NAME="hiddenName"

[VALUE="textValue"1>

Here’s a garden-variety definition for a hidden element:
<INPUT TYPE="hidden" NAME="secretTextField">

Inserting Interactive Form Elements: <INPUT>

Password
A password object is a special text input field that displays asterisks

on the screen (in place of the characters that the user actually types).

Tag Syntax for a Password Explanation

<INPUT Single <INPUT> tag

TYPE="password" Specifies the type of element (password)

NAME="passwordName" Internal name of password (for coding

purposes)

SIZE=integer Number of characters to display initially

[VALUE="textValue"1> Initial value of password (optional)

Take a look at this sample password definition:

<INPUT TYPE="password" NAME="userPassword" SIZE=
VALUE="secret!"> PLEE

Radio button

A radio button is a toggle switch control, as is a check box. Unlike a
check box, however, radio buttons are most often grouped in sets,
which allow users to select a single option from a list.

Tag Syntax for a Radio Button Explanation

<INPUT Single <INPUT> tag

TYPE="radio" Specifies the kind of element

(radio)

NAME="radioName" Internal name of radio button (for

coding purposes)

VALUE="radioValue" Specifies a value to be returned to

the server

[CHECKED] Specifies that this button is initially

selected (optional)

[onClick="handlerText"]1> Code to invoke when user clicks on

radio button (optional)

textToDisplay Descriptive text

The following code shows a common way to define a set of radio
buttons. Notice how the value for the NAME attribute is the same
(timeChoice) for every radio button? Because all three radio
buttons share one name (and only one value can be associated
with one name at a time), the user is effectively restricted to
selecting only one radio button from the entire group.

Inserting Interactive Form Elements: <INPUT>

MR

What's your favorite time of day?
<INPUT TYPE="radio" NAME="timeChoice"
VALUE="morningSelected" CHECKED

onClick="showValues(0)"> Morning

<INPUT TYPE="radio" NAME="timeChoice"
VALUE="afternoonSelected"
onClick="showValues(1)"> Afternoon

<INPUT TYPE="radio" NAME="timeChoice"
VALUE="eveningSelected"
onClick="showValues(2)"> Evening

Reset

A reset object is a special kind of button. When a user clicks on the
reset button, all the user-input values in a form are cleared and
reset to their initial (default) values.

Explanation
Single <INPUT tag
Specifies type of control (reset)

Tag Syntax for a Reset Button
<INPUT

TYPE="reset"
NAME="resetName"

Internal name of control (for coding
purposes)

Text to display on face of reset button

Code to invoke when a user clicks the
button (optional)

VALUE="buttonText"
[onClick="handlerText"1>

Here’s an example of how to add a reset button to your form:

C<INPUT TYPE="reset" NAME="resetButton" VALUE="Reset
Form Now" onClick="reinitializeFormulas()">

Select

The <SELECT> element is used to display both a single-selection
list and a scrolling multiple-selection list box (depending on
whether you specify the MULTIPLE attribute).

The <SELECT> element is one of the two input elements
(KTEXTAREA> is the other) that don’t follow the standard conven-
tion of specifying the element as the value for the <INPUT> tag’s
TYPE attribute. Unlike the other interactive objects that you put in
an HTML document by using the <INPUT> tag and an attribute,
you simply use the <SELECT> tag to put a list box in your Web
page, as you can see in the following table.

TP

Inserting Interactive Form Elements: <INPUT>

Tag Syntax for a Select List Box

Explanation

<SELECT

Opening <SELECT> tag

NAME="seTectName"

Internal name of control (for coding
purposes)

[SIZE=integer]

Number of options visible (optional;
default is 1)

[MULTIPLE]

Specifies multiple-selection
scrolling box (optional)

[onBTur="handlerText"]

Code to invpke when focus is lost
(the user clicks elsewhere)

[onChange="handlerText"]

Code to invoke when value changes
and focus is lost

[onFocus="handlerText"]>

Code; to invoke when focus is
received (user clicks on element)

<OPTION

Specifies a selection item

[VALUE="optionValue"]

Value.retumed to server when user
submits a form

[SELECTEDI>

Specifies that this option is selected
by default

textToDisplay

Descriptive text to display next to
option

</SELECT>

Closing </SELECT> tag

You can repeat the OPTION tag (and its associated attributes) as
needed, once for each option that you provide.

Because adding a list box to a Web page entails working not only
with the usual associated attributes you've come to expect, but an
additional tag, too (the <OPTION> tag), it can be a little confusing
at first. Here’s a short, to-the-point example to help you get
started:

<SELECT NAME="favoriteMusic" SIZE=3 MULTIPLE
onBlur="displayResult(this)">

<OPTION VALUE="popChosen™ SELECTED> po
<OPTION VALUE="rockChosen" > rock pop

<OPE£%% VALUE="dogsChosen" > dogs barking Jingle
ells

<OPTION VALUE="rapChosen" > rap

<OPTION VALUE="showChosen" > show tunes

<OPTION VALUE="africanChosen" > African classical

</SELECT>

|

B B e B B Mo Bl
e e . -

 —
o

g
L1

=
S

Naly

Inserting Interactive Form Elements: <INPUT> |

Submit

A Submit element is a special kind of button that submits (or
sends) values from a form to a server (specifically, to a particular
CGI program on a particular server that you define as part of the
<FORM>...</FORM> tag pair). The submit button works in
tandem with the ACTION attribute of the <FORM>. . . </FORM> tag
pair. You can find more information about submitting form values
to a CGI server in “Specifying Useful Web Page Features,” later in
this part.

Explanation
Single <INPUT> tag
Specifies kind of control (submit)

Internal name of submit button (for
coding purposes)

Text to display on face of submit button

Code to invoke when user clicks
submit button (technically optional,
but practically necessary!)

Tag Syntax for a Submit Button
<INPUT

TYPE="submit"
NAME="submitName"

VALUE="submitText"
[onClick="handlerText"1>

Here’s a practical example:

CINPUT TYPE="submit" NAME="submitButton"
VALUE="Submit Form" onClick="verifyInput()">

Text

The text element is a single-line input field.

Tag Syntax for a Text Element

Explanation

<INPUT

Single <INPUT> tag

TYPE="text"

Specifies the kind of control (text)

NAME="textName"

Internal name of the text field (for
coding purposes)

VALUE="textValue"

Specifies initial value of text field

SIZE=integer

Number of characters to display
before scrolling

[onBlur="handlerText"]

Code to invoke when a user clicks
elsewhere and focus is lost (optional)

[onChange="handlerText"]

Code to invoke when value changes
and focus is lost (optional)

(continued)

Inserting Interactive Form Elements: <INPUT>

Tag Syntar for a Text Element Explanation

[onFocus="handlerText"] Code to invoke when user clicks on

the glement and focus is received
(optional)

[onSelect="handlerText"1> Code toinvoke when text in the field

is highlighted (optional)

Here’s a simple illustration of the text element in action:

<IN3yT TYPE="text" NAME="TastName" VALUE="Your name
ere"

SIZE=30 onChange="validate()">

Textarea

A <TEXTAREA> element is just like a text element, except that
instead of defining one scrolling input line, the <TEXTAREA>
element defines a multiline scroll box so that users can type in
whole reams of text. Like <SELECT>, <TEXTAREA> doesn’t follow
the standard input element convention of specifying the element
as the value for the <INPUT> tag’s TYPE attribute. Instead, the
<INPUT> tag is replaced in this case by the <TEXTAREA> tag, as
shown in the following table.

Tag Syntax for a Textarea Element Explanation

<TEXTAREA Opening <TEXTAREA> tag

NAME="textareaName" Internal name of textarea object (for
coding)

ROWS=integer Number of rows to display

COLS=integer Number of columns to display

[onBTlur="handlerText"] Code to invoke when textarea loses

focus (optional)

[onChange="handlerText"] Code to invoke when value changes

and focus is lost (optional)

[onFocus="handlerText"] Code to invoke when focus is

received (optional)

[onSelect="handlerText"1> Code toinvoke when text is

highlighted (optional)

textToDisplay Initial text to display inside scroll box

</TEXTAREA> Closing </ TEXTAREA> tag

%

T T Y Y

-

Inserting a Java Applet: <APPLET>. . . </APPLET>

C
2
z
=

2
s

Here’s a garden-variety textarea example for you to see:

CTEXTAREA NAME="directions" ROWS=4 COLS=60
onBlur="validate()" onChange="display()"
onFocus="welcome()" onSelect="changeMode()">

This is default text. You can type right over it,
add to it, cut it, paste it, or copy it.
</TEXTAREA>

Inserting a Java Applet: <APPLET> . . .
</APPLET>

A Java applet is a special little software program specifically
designed to live inside a Web page.

JavaScript For Dummies, by yours truly, contains a whole chapter
dedicated to Java and JavaScript-to-Java interaction. Also check
out Java For Dummies, by Aaron Walsh, for more low-down on
Java applets.

To embed a Java applet in your Web page, use this tag pair:
CAPPLET>...</APPLET>

To access a Java applet in JavaScript, use this identifier:
document.applets[0]

In the preceding JavaScript identifier, 0 is a number representing
the order in which the applet was defined in the HTML code. The
first applet you define is represented by 0; the second, by 1; the
third, by 2; and so forth.

When you embed a Java applet in your HTML code, you need to
know a little bit about that applet. For example, some applets
require parameters, which are values that you send an applet when
you embed it. (Because applet function is restricted only by the
Java programmer’s imagination, the parameters you may be
required to supply are equally diverse.) If you want to embed an
applet that requires parameters, you have to include those
parameters in your <APPLET>. . .</APPLET> definition. Two
ways exist to find out what any given applet requires so that you
can embed it in your Web page:

4 Surf the Web until you find an example of how someone else
embedded the applet and follow that example. (Typically, this
is how you find out about applets in the first place.)

4 E-mail the applet programmer directly and ask for instructions.

TP

Inserting a Java Applet: <APPLET>. . . </APPLET>

Tag Syntax to Embed a Java Applet

Explanation

<APPLET

Beginning <APPLET> tag

CODE="classFileName"

File name of the applet to
load (*.cTass)

HEIGHT=height

Height of the applet, in pixels

WIDTH=width

Width of the applet, in pixels

[MAYSCRIPT]

If specified, this attribute
permits the applet to access
JavaScript values (optional)

[NAME="appletName"]

Name of applet for internal
coding purposes (optional
but recommended)

[CODEBASE="classFileDirectory"]

Directory where
cIas_sFiIeName is located
(optional but recommended)

[ALT="alternateText"]

Text to display in place of
applet (for browsers that
don’t support Java; optional)

[ALIGN="position"]

Specifies alignment of applet
on HTML page (optional)

[HSPACE=numberOfPixels]

Horizontal margin of applet,
in pixels (optional)

[VSPACE=numberQfPixels]/

Vertical margin for applet, in
pixels (optional)

You can repeat the following optional section as many times as necessary:

[<PARAM

Opening <PARAM> tag

NAME="parameterName"

Name of parameter to pass
to applet

VALUE="parameterValue">]

Value to pass to applet

[</PARAM>]

Closing <PARAM> tag

</APPLET>

Ending </APPLET> tag

The value for ALIGN can be any of the following string values:
LEFT, RIGHT, TOP, ABSMIDDLE, ABSBOTTOM, TEXTTOP, MIDDLE,

BASELINE, or BOTTOM.

Here’s an example of code that embeds an applet that doesn’t
require any parameters. (It actually works, if you want to try it
out for yourself; if you do, you’ll see a handful of animated,
multicolored bubbles drift lazily from the bottom of the applet

space up to the top.)

| '

-y ¥ v

o

i

Mapping an Area: <MAP>...<AREA>...</MAP>

SAMPLe

L2

<APPLET NAME="BubbleApplet"”

CODE="Bubbles.class"

CODEBASE="http://java.sun.com/applets/applets/
Bubbles"

WIDTH=500 HEIGHT=500> .

{/APPLET>

Mapping an Area: <MAP>. . .<AREA>. ..
</MAP>

An area is like a big, thick link: An area describes a space on your
page, which you can shape and size as you want and which responds
to user events. Areas are used to create what are called clickable

maps; as users move their mouse around on an image, the link (or
URL) that appears in the user’s Web status line changes.

To embed an area in your Web page, use this tag pair:

<MAP>. . .<AREA>...</MAP>

To access that area in JavaScript, use this identifier:

document.links[0]

No, the preceding line isn’t a typo! Areas are stored in the 11nks
array, right along with regular, “skinny” links.

Tag Syntax to Embed an Area

Explanation

<MAP

Opening <MAP> tag (you need to
define a map to define an area)

NAME="mapName">

Name of map for internal coding
purposes

<AREA

Opening <AREA> tag

NAME="areaName"

Name of area for internal coding
purposes

COORDS="x1, yl, x2, y2"

Coordinates of the image map, in
integers

HREF="Tocation"

URL of document to load when
user clicks on an area, or
“javascript:functionName()"

[SHAPE="shape"]

Shape of the map (see the Tip that
follows the table)

[TARGET="windowName"]

Window to load URL into when a
user clicks on an area

[onMouseQut="handlerText"]

Code to execute when mouse
pointer moves out of area

[onMouseOver="handlerText"]

Code to execute when mouse
pointer is dragged across area

</MAP>

Closing </MAP> tag

TP

Plugging in a Plug-in <EMBED>. . .</EMBED>

Here’s a sample area definition:
<MAP NAME="thistleMap">

<AREA NAME="topThistle" COORDS="0,0,228,318"
HREF="javascript:void(0)"

onMouseQOver="self.status='That mouse pointer sure
feels nice'; return true" ’

onMouseQut="self.status="'Thanks for visiting; come
again!'; return true">

</MAP>

The preceding code snippet creates a map that matches the
boundaries of a picture. (The picture in this case happens to be of
bright pink thistles, which is why the name of the map is
thistleMap.) When a user moves the cursor onto the picture/
map, the text 'That mouse pointer sure feels nice'
appears in the status bar. When a user drags the cursor away from
the picture/map so that the cursor rests somewhere else on the
screen, the text in the status bar changes to "Thanks for
visiting; come again!"

The value for SHAPE can be any of the following strings: "rect",
"poly","circle", or “default".If you don’t define any value

for the SHAPE attribute, the shape defaults to "rect".

Plugging in a Plug-in: <EMBED> . . .
<EMBED>

TP

Netscape plug-ins are software components that “plug in”
to Netscape Navigator to extend its capabilities.

To embed a plug-in into your Web page, use this tag pair:
<EMBED>...</EMBED>

To access that plug-in in JavaScript, use this identifier:
navigator.plugins[0]

In the preceding JavaScript identifier, 0 is a number representing
the order the plug-in was embedded in your HTML code. The first
plug-in you embed is represented by 0; the second, by 1; the third,
by 2; and so forth.

You define the pTugin object by using the <EMBED> tag. The
output of the plug-in that you embed appears in the same space on
your form where the p1ugin object appears.

r

Specifying Useful Web Page Features

PN

Tag Syntax to Embed a Plug-In Explanation

<EMBED Opening <EMBED> tag

URL containing the source of the
plug-in

SRC="source"

Name of embedded plug-in object (for
internal coding purposes)

NAME="embedName"

HEIGHT=height Height of embedded plug-in, in pixels
WIDTH=width> Width of embedded plug-in, in pixels
You can repeat the following optional section as many times as necessary:
[<PARAM Opening <PARAM> tag

NAME="parameterName" Name of parameter (argument) to
pass to plug-in

Value of parameter (argument) to
pass to plug-in

Closing </PARAM> tag
Closing </EMBED> tag

VALUE="parameterValue">]

[</PARAM>]
</EMBED>

If you're unfamiliar with plug-ins — what they are, how they work,
and why the heck you’d ever want to embed one in your Web
page — you may want to take a look at the following URL which
lists a treasure trove of plug-ins for sale:

http://home.netscape.com/comprod/
development_partners/plugin_api/
plugin_design.html

Here’s an example that you can try out for yourself. This code uses
the Adobe Acrobat plug-in to display a .pdf file, which is a file with
a fancy graphic display format.

<EMBED NAME="myEmbed" SRC="http://
ecco.bsee.swin.edu.au/text/adobe/PDFs/
AcroCD.pdf"

WIDTH=450 HEIGHT=450>

</EMBED> -

Specifying Useful Web Page Features

This section contains examples of useful things you may want to'
configure your Web pages to do:

4 Call a CGI program
4 Display a title

TP

QMM

Specifying Useful Web Page Features

CGl program to call on submit: <FORM> . . .
</FORM>

When a user clicks on a submit push button in a form, all the
values contained in that form are sent automatically to a Common
Gateway Interface (CGI) program. You specify a particular CGI
program as the value of the ACTION attribute of the <FORM> tag. If
you don’t specify a CGI program for the ACTION attribute, nothing
happens when a user clicks on the submit push button, which is
great for testing. In real life, though, if you're going to the trouble
of adding a submit push button, you need to specify a value for the
ACTION attribute, as shown in the following code:

<FORM

ACTION="http://www.madeup.com/cgi—bin/
someCGIProgram">

</FORM>
Wait until your Web page is behaving nicely before you specify a
CGI program to which you want to submit your form data. That

way, you can test and refine your JavaScript statements first
(before you complicate matters by introducing the CGI program).

Title for your Web page: <TITLE>. . .</TITLE>

Titles play an important part in communicating your message
(whatever that may be) to your users. Not only are the words
in your title used by many Web-searching programs, but when
users save a reference to your Web page (sometimes called
bookmarking), your title is what appears on their list of saved
references. For these reasons alone it’s worth spending a little
time on wording your title.

Notice in the following example that the <TITLE>...</TITLE>
tags are placed between the <HEAD>. . .</HEAD> tags.

<HTML>

<HEAD>

<TITLE>

Dave's Retail Catalogue of Restored Antique Wood-

Burning Stoves

<TITLE>

</HEAD>

</HTML>

Although you’re not required to place the title between the
<HEAD> tags (the title will still appear if you place the
<TITLE>...</TITLED tags after the <HEAD>. . .</HEAD> tags),
the example shows the standard style used by the Web-savvy
crowd.

—
|

/= % %

r

B BL BL B B B A Ah B 6 ow BN G

-4 3 3 B

|

W

JavaScript Basics

This part is like a JavaScript grammar book, dictio-
nary, and thesaurus — all rolled into one. In this part,
you find the nuts-and-bolts mechanics of writing
JavaScript statements — from syntax to special
keywords, from declaring variables to defining and
calling functions. You also find an overview of all the
objects you can work with in JavaScript. (For a
detailed description of each object in the overview,
see also Part II1.)

In this part . . .

v+ Understanding the security issues associated with
JavaScript scripts

+* Becoming familiar with the JavaScript object
model

v+ Unraveling JavaScript syntax and expressions

About JavaScript Security

About JavaScript Security

q\““"’o,

TiP

&g}.m%

ER)

Because JavaScript runs on the client computer, its ability to cause
security breaches is fairly limited. Security issues are more of a
concern when client/server communication is involved, and this
type of communication isn’t included in JavaScript’s bag of tricks.

As of this writing, only one minor problem has been widely
publicized, and that’s the ability of a mischievous JavaScripter to
set up a harmless-looking button that sends an e-mail message
(complete with your e-mail address) to the mischief-maker,
without your knowledge.

Fortunately, this problem only rears its ugly head with the
Netscape Navigator 3.0 Web browser, and it’s completely prevent-
able. From the Navigator browser main window, all you have to do
is choose Options>Network Preferences=>Protocols. Then, in the
Show an Alert Before box, click the check box labeled Submitting a
Form by Email, and the problem is solved: Any time that your Web
browser attempts to send e-mail, an alert window notifies you and
gives you the opportunity to cancel the proceedings.

Because developers tend to take security issues very seriously,
expect each version of Netscape Navigator and Microsoft Internet
Explorer to be more secure than its predecessor.

Web security is a hot topic these days — whenever information
passes across the Internet, there’s always an associated security
hazard. CGI programs, plug-ins, Java applets, and cookies all present
different security risks that you may want to be aware of. If you
plan to integrate your JavaScript scripts with any of these elements
(or just to find out more about staying secure on the Internet, in
general), check out Computer Security For Dummies, by Peter Davis
and Barry Lewis (published by IDG Books Worldwide, Inc.).

This Web site is devoted exclusively to JavaScript-related
security issues:

http://ciac.11nl.gov/ciac/javasecure.html

Basics of the JavaScript Object Model

You can work with three main kinds of objects in JavaScript:
4 Built-in data types
4 Objects that make up a Web page
4 Utility objects

Read on for a quick rundown of each object type and the differ-
ences between them.

1

- a

- |

e

t

-

3

Basics of the JavaScript Object Model

Built-in JavaScript data types

Numbers, Boolean values (true or false), and strings (a bunch of
characters surrounded by quotes, like “this”) are such basic
programming building blocks (called data types) that you don’t
even have to create special objects to use them in JavaScript. All
you have to do is specify a numeric, Boolean, or string value, and
the JavaScript interpreter takes care of the rest.

Look at the following examples to see what | mean:

Built-in Data Type JavaScript Syntax

Boolean var loveWork = true

null var middlelnitial = null
number var myAge = 29

string var fullName = "Kris Kringle"

In the preceding table, you create four different variables to hold
four different values, each associated with a different data type.
The first variable, 1oveWork, is assigned the Boolean value true;
the second variable, middlelnitial, is assigned the nul1 value;
the third variable, myAge, is assigned a number; and the fourth
value, ful1Name, is assigned a string value. Taken together, the
JavaScript interpreter reads these variables as, “Kris Kringle is age
29, has no middle initial, and loves his work.”

The null data type means “nothing” (which is different from
simply not assigning any value). The nu11 data type is a valid
value all on its own.

Hierarchy of JavaScript objects

You can think of the JavaScript object hierarchy as your favorite
browser’s object hierarchy, because you create these objects in
HTML (a few are even created for you automatically by the
browser itself) before JavaScript ever enters the picture. After the
objects exist, JavaScript lets you examine them, change them,
perform calculations based on them, and do pretty much whatever
else your heart desires.

Notice in the following table that when one object is contained

in another, that containment is reflected in the JavaScript syntax.
For example, a button is defined in HTML as part of a form which,
itself, is part of the overall HTML document. So if you want to
access a button, you need to type this code:

document.nameOfYourForm.nameOfYourButton

Basics of the JavaScript Object Model

Object HTML Tag JavaScript Syntax
window none (it's a given) window (optional)
document <HTML>. . .</HTML> document
anchor <A> .. KIAS document.
lTinks[0]
applet <APPLET>...</APPLET> document.
applets[0]
area <MAP>...<AREA>...</MAP> document.
someArea
form <FORM>...</FORM> document.
someForm
button <INPUT TYPE= document.
"button"> someForm.
someButton
checkbox <INPUT TYPE= document.
"checkbox"> someForm.
myCheckbox
fileUpload <INPUT TYPE= document.
"file"> someForm.
myFileUpload
hidden <INPUT TYPE= document.
"hidden"> someForm.
someHidden
image document.
someForm.
somelmage
password <INPUT TYPE= document.
"password"> someForm.
somePassword
radio <INPUT TYPE= document.
"radio"> someForm.
someRadio
reset <INPUT TYPE= document.
"reset"> someForm.
someReset
select <SELECT>...</SELECT> document.
someForm.
someSelect
submit <INPUT TYPE="submit"> document.
someForm.
someSubmit
text <INPUT TYPE="text"> “document.
someForm.
someText

o oo l- " _ II .) .I,: | I~ _ [- ,mf ;I '“I

Basics of the JavaScript Object Model

TP

Object HTML Tag JavaScript Syntax
textarea <TEXTAREA>... document.
</TEXTAREA> somefForm.
someTextarea
Tink <A> . KA document.
links[0]
plugin <EMBED>...</EMBED> document.
embeds[0]
frame <FRAMESET>... frame
</FRAMESET>
history none (it's a given) history
location none (it's a given) location
navigator none (it's a given) navigator

See also Part 1 to find out about the individual HTML tags that
create each object.

Both the window and the frame objects have associated aliases.
(An alias is an alternative way of referring to an object and should
be used if doing so makes your code easier to understand.)

You can refer to a window by any of the following identifiers:
parent (if the window in question is the parent of the window
containing the reference); self (if the window in question is the
same window as the one containing the reference); or top (if the
window in question is at the top of the window hierarchy contain-
ing the reference).

Similarly, a frame can be referred to by either parent or self.

Utility objects

Utility objects, unlike the objects that make up the JavaScript
object hierarchy, don’t represent any one piece of a Web page. As
the following table shows, utility objects are just useful stand-
alone utilities — arrays, date, functions — that you may want to
use in your JavaScript statements.

Utility Object JavaScript Syntax

Array var myPets = new Array
("Spike", "Zeke", "Fluffy")

Date var today = new Date()

Function var salary = new Function

("base", "commission",
"return base + (base *
commission))"

(continued)

Basic Punctuation and Syntax

TP

Utility Object JavaScript Syntax

Math var randomNumber =
Math.random()

Option var blues = new
Option("Blues music",
"bDlues", true, true)

An Option object isn’t much use by itself; it’s only meaningful
when it’s related to a select list box. Normally, you define
options with HTML statements at the same time you define the list
box itself. Alternatively, you can define them as shown with the
Option utility object.

Punctuation and Syntax

As programming languages go, JavaScript is pretty easy to learn.
(I know, easy for me to say!) Just like English, the JavaScript
language is made up of words and punctuation, which you, gentle
JavaScripter, must combine to form meaningful statements.
Between Part III, which describes all the JavaScript objects in
detail, and this part, which describes all the JavaScript syntax
and keywords, you have everything you need to write your very
own scripts.

Some JavaScript interpreters are a little more forgiving than
others, but no guarantee exists that future versions won'’t tighten
the screws a bit. What that means is that, while bending the
punctuation rules in this section may work for now (for example,
you may be able to get away with leaving off a piece of punctua-
tion here or there), it probably won’t work in all browsers, or for
very long (and long in Web years is about three months!). To be on
the safe side, always follow the guidelines in this section.

If you are familiar with C or C++, you may immediately notice
JavaScript’s lack of a statement-ending semicolon. Punctuation is a
little less complicated in JavaScript than it is in C or C++, but it’s
not foolproof! JavaScript still provides you the flexibility to make a
couple of annoying punctuation errors — and this section helps
you avoid them.

Nested quotes

You use quotes in JavaScript — both single quotes (') and double
quotes (") — to surround string values. Why both kinds of quotes?
Because you may run into a situation where you need to use two
sets of quotes in a single JavaScript statement. If so, you need to
use both single and double quotes and alternate them.

-

i

L

o

|

B

P I

.
L
f

|

Basic Punctuation and Syntax

RN/,
3 ‘-/

e

If you try to nest double quotes inside double quotes (or single
quotes inside single quotes), you run into trouble. Here’s an
example:

onClick="alert('This is an example of correctly
nested quotes.')"

onClick="alert("Warning! This statement will
produce an error.")"

onClick="alert('Warning! This statement is wrong,
too. ")

If you want a double quote to appear in a string, here’s what you
do: Precede the double quote with a backslash. (This action is
called escaping the quote.) Here’s what it looks like:

alert("Did you 1ike the movie \"Phenomenon\"?")

Pairs

JavaScript scripts are typically rife with pairs — pairs of opening
and closing tags and angle brackets (courtesy of HTML), pairs of
parentheses, pairs of quotes, and pairs of curly braces. If you
forget to add a closing bracket, brace, or whatever, the JavaScript
interpreter complains. Sometimes the complaint takes the form of
a syntax error; sometimes you get a goofy-looking page display.

Following are some examples of pair mismatching to look out for:

HTML/JavaScript Statement Error

<FORM NAME="myForm" Missing right angle bracket
(>)

<A HREF="http://www.tucows.
com">Two Cows

Missing closing tag ()

alert("Form processing Missing parenthesis ())

complete.”
firstName = "Barney Missing quote (")
if (name == "") { alert("Please Missing curly brace (})

enter your name.")

Spelling and capitalization (case)

All the words you use in programming JavaScript must be spelled
correctly. For example, if you create a variable called 1astName
and then try to display it on your Web page but misspell it as
lTastNam, you get an error. As close as these two words may
appear to human eyes, they look nothing alike to the JavaScript
interpreter.

Comments (/*...*/ and //)

Character case is just as important as correct spelling. For
example, the JavaScript interpreter won'’t recognize the variable
named 1astName if you type it LastName.

Top-down

The JavaScript interpreter reads from top to bottom, left to right.
So, before you can use something, that something must first be
defined. Case in point: In order to call (or use) a function, you
must first define that function in an earlier statement. Likewise, if
you want to access a variable, you must declare that variable first.

Comments (/*...* and //)

RN/,
WM,

Comments aren’t processed at all by the JavaScript interpreter;
they’re ignored. A comment’s purpose is to give script authors a
free-form way to communicate with themselves (you’d be sur-
prised how quickly you forget why you did something the way you
did it!) and any other humans who read their scripts.

Two different kinds of JavaScript comments exist. Either can
appear anywhere in your script, as many times as you want.

You create a single-line comment by typing a double slash (//) at
the beginning of the line, followed by your comment, like this:

// This is a single-Tine comment.

Create a multiple-line comment by beginning a line with /* and
ending your comment with */, like so:

/* This comment can span multiple Tines. Always
remember to close it off, though; if you for-
get, you'll get weird errors when you try to
display your script. */

Nesting multiple-line comments is a bad idea. A block of code like
the following can cause grief because the interpreter ignores the
second /* when it gets to the first */:

/* Blocking out this section for testing pur-
poses. ..
y /* Here is a comment. */
*

nEREE

— X

.

i

f

I' — ; |(

Loops

Conditional Expressions: if . . . else

The if...else expression is called a conditional expression
because you use it to test whether a certain condition is true. A
condition can be a variable, a statement, or an expression —
anything at all that can be resolved by the JavaScript interpreter
to a simple true or false answer.

If the condition is true, the interpreter executes all the statements
between curly braces that follow the if clause. If the condition is
false, the interpreter executes all the statements between curly
braces that follow the e1se clause. Here’s the generic description
of howtouse if...else:

if (condition) f{
Statements

[else {
Statements
H]

The square brackets around the e1se clause mean that the else
clause is optional — it’s possible to code just the if clause, if you
want. And no rule says that an if...else expression can’t have
other statements nested inside of it, either (many do). Just
remember to include the curly braces as shown for each
if...else. There’s no leeway here; they have to be curly braces,
not parentheses, and they have to come in pairs, just like in the
following example:

if (numberOrdered <= 100) {
//calculate the order at retail cost
calculateTotal(19.95)

else {
// calculate the order at wholesale cost
calculateTotal(11.00)

Loops are common programming constructs that you can use to
perform a single task many times, in as compact a way as possible.
JavaScript contains two basic kinds of loops: for and while. Both
types of loops are explained in the following sections, along with
some other keywords that you can use with for and while to
create concise, powerful loops.

TIP

break

The break keyword must be used inside of a loop (your loop
choices are for, for...in, and whi1le). When the JavaScript
interpreter encounters a break statement, it breaks out of the
loop entirely and starts interpreting again at the first line following
the loop. For example:

for (var i = 1; i<= 20; i++) {

if (i ==13) { // Only go up to 12
break

document.writeln(i)

this is where the interpreter will pick up again

}
//
// after the break

Here’s how the output will look:
1234567891011 12

continue

Like break, continue can be used inside for, for...1in, or
while loops. When the JavaScript interpreter encounters a
continue statement, it stops what it’s doing and hops back up to
the beginning of the loop to continue as normal. The following
example may make it clearer:

for (var i = 1; i<= 20; i++) {
#ag (i ==13) { // Superstitious! Don't print

continue

} document.writeln(i)

The following output shows you exactly how continue works.
You may want to compare the following output to the output
generated by break:

1234567891011 12 14 15 16 17 18 19 20

In the output generated by continue, you can see that the
number 13 is skipped — but then the loop continues and prints
out the numbers 14 through 20 (unlike the break command, which
stops the loop dead in its tracks after printing the number 12).

The continue keyword is useful for handling exceptions to a rule.
For example, you may want to process all the items in a group the
same way except for one or two special cases.

s] ‘_——'

i

— —=

—
At
i
i

for

The for loop comes straight from the C language — and since C is
famous for its terseness, it won’t come as a shock to you that in
the wrong hands, for loops can be positively Byzantine.

First, have a look at the generic form:

for ([initial expressionl; [condition]; [update
expression]) {
| Statements

The preceding syntax introduces three terms that may be new to
you:

4 Initial expression: Think of the initial expression as the
starting point — a snapshot of how things look right before
the interpreter hops into the loop and gets down to business.

4+ Condition: The condition is the JavaScript expression to be
tested each time the interpreter takes a pass around the loop.

4+ Update expression: If the condition tests true, the JavaScript
interpreter performs the update expression before looping
around to test the condition again.

Here’s a short example that should help make the workings of the
for loop crystal clear:

for (var i = 1; 1 <= 10; i++) {
} document.writeln(i)

The following steps describe what happens in the preceding for
loop:

1. The variable i is set equal to 1.

2. The JavaScript interpreter checks to see whether i is less
than or equal to 10.

3. i is less than or equal to 10, so the body of the loop executes.

4. i is written to the screen (this one action,
document.writeln(i), forms the entire body of the loop).

5. The JavaScript interpreter adds 1 to i; now i is 2.

6. The JavaScript interpreter checks to see whether 1 is less
than or equal to 10.

7. i is less than or equal to 10, so the body of the loop executes.

8. i is written to the screen via the document . writeln method
(again, this one action comprises the entire loop body).

Loops

9. The JavaScript interpreter adds 1 to i; now i is 3.

10. Start again at Step 6.

See the pattern? The interpreter begins at the top of the loop and
performs the body of the loop once for each time that the loop
condition is true.

for...in

If you like the for loop, you'll love for. ..in. The two are very
similar, but unlike for, you use the for. .. in loop exclusively for
looping, or iterating, through all the properties of an object, like so:

for (var in object) {
statements
}

To elaborate, here’s a function that loops through all the proper-
ties of a given object. As the function loops through, it builds a
string (called result) containing the name and value of each
property it finds.

function displayProperties(inputObject,
inputObjectName){
var result = ""
for (var eachProperty in inputObject) {
result + = inputObjectName
+ " "

eéchProperty

inputObject[eachProperty]
"
"

}
result + = "<HR>"
return result

+
+
+
+

}

Here'’s what the output for the preceding code snippet might look
like if the text input element aTextField were passed into the
loop:
document.myForm.aTextField.type text
document.myForm.aTextField.name aTextField
document.myForm.aTextField.form [object Form]
docuqent.myForm.aTextFie]d.va1ue = My dog has
fleas.
document.myForm.aTextField.defaultValue = null

wnn

while

The while loop is similar to the for loop. First you set up a
condition, and while that condition is true, the JavaScript inter-
preter executes the statements in the body of the loop. If the

-

pligininl
-udn-qh-*-‘

A a e

gigigs

1.

Operators

condition is never true, the statements never execute; if the
condition is always true, well, let’s just say that those statements
will execute for a long, long, long, long time. Obviously, then, you
want to make sure that one of the statements in the body of your
whiTe loop changes the whi1e condition in some way so that it
stops being true at some point.

First, the generic syntax:
while (condition) {

statements
SAMPLe }
Now here’s an example of while in action:
while (totallnventory > numberPurchased) {
totallnventory = totallnventory -
numberPurchased
numberSales++
Operators

Operators are kind of like conjunctions in English: You use opera-
tors to join multiple phrases together to form expressions. The
operators you're familiar with in everyday life include the plus
sign (+) and the minus sign (-). JavaScript provides you with a lot
more operators, however, as you can see in the following sections.

Assignment operators

Assignment operators let you assign values to variables. Besides
being able to make a straight one-to-one assignment, though, you
can also use some of them as a kind of shorthand to bump up a
value based on another value. The following table describes how
each operator works:

Example
(x =10,y = 15 each time)

Operator Meaning

X =y The value of y is assignedtox x = 15

X +=y x=Xx+ y (addition) x = 25

X -= Yy x=Xx-Y (subtraction) X = -5

X *=y x=x*y (multiplication) x = 1560

X /=y x=x/y(division) X = .6666666
X %=y x=x%y (modulus) x =10

!
|
-

Operators r Operators

TP Here’s how the modulus operator works: x %=y means that the o i
interpreter tries to divide y into x evenly. The result is anything Operator Na-me" " I.:'xample | Mefmmq
left over. In the preceding example, x is 10 and y is 15. 15 won’t go && logical “and” if (x ==y && a 1= b) gm)s equal toy I
into 10 evenly at all, so 10 is what’s left over. tob 815 not equa

| | logical “or” if (x <y || a < b) If x is less than y
OR a s less than b

! not if (Ix) If NOT x (that is, if

Comparison operators

When comparing two values or expressions for equality, you've

-y v

got the following choices: X is false, or zero)
Operator Example Meaning [Mathematical operators
== (two equal signs) x ==y - X is equal to y Mathematical operators in JavaScript are just as you'd expect:
I= X =y X is not equal to y addition, subtraction, multiplication, division, and modulus (the
< X <y x is less than y r remaipder opgrator). Un'like the assignn_lent operators, which ,
N - = combined assignment with math operations, these operators don’t
X2y X is greater than y automatically add in the value on the left-hand side of an equation.
<= x <=y : x is less than or equal Take a look at the following examples:
toy
>= x o=y ’é(;zzgr&a;e’ than or Operator Example Meaning
- + =1+ =4 iti
?: x = (y < 0) 7?7 -y :y Ilyisless than zero, X 1 3 X {addition) -
’ assign -y to x; x = 100 - 75 x = 25 (subtraction)
otherwise, assign y to x * X =6 * 7 x = 42 (multiplication)
L A common mistake that beginning programmers often make is / x =49 /7 x = 7 (division)
using a singe equal sign in place of a double equal sign (and vice % x=117%5 x = 1 (modulus)
versa). JavaScript doesn’t complain if you do this; after all, both
(x == 6)and (x = 6) are legal expressions, and JavaScript has d
no way of knowing which expression you really want to state. The op erator precedence

two examples are radically different, though, and interchanging Just as in regular (non-Web-page-oriented) math, an order of

them can wreak havoc on your logic. The first example compares 6
to x, and the second assigns 6 to x!

Logical operators

Logical operators work on logical values (also called Boolean
values) and they also return Boolean values. A Boolean value can
only be one of two things: It’s either true or it’s false. When you see
two expressions separated by a logical operator, the JavaScript
interpreter first computes (or resolves) the expressions to see
whether each is true or false; then it computes the entire state-
ment. If an expression resolves to a number other than zero, the
expression is considered to be true; if the expression computes fo
zero, it’s considered to be false. Check out the following table for
examples of the logical operators available in JavaScript:

— s—

i

B B B B B ar Ay ey oy By A e

|

i

i

—

evaluation is applied to a JavaScript statement that contains
multiple operators. Unless you set phrases off with parentheses,
the JavaScript interpreter observes the precedence order shown
in the following table (from the parentheses, which has the highest
order of precedence, to the comma, which has the lowest):

Operator Syntax Explanation

Parentheses) For calling functions and
grouping math expressions

Unary ST ‘ Decrement, increment, and
negation operators

Mathematical %, /, *, -, + Modulus, division, multiplica-
tion, subtraction, addition

Relational >=,>,<=< Greater than/equal to, greater
than, less than/equal to, less
than

TP

Special Operators

Operator Syntax Explanation
Equality I=, ==

Logical “and” &&

Not equal to, equal to

If all expressions in a
statement meet some criteria

If at least one expression in a
statement meets some criteria

(y<0)?x:y

If y is less than 0 (whatever is
before the ? is true), then
return x (whatever is before
the :), else return y (whatever
is after the :)

%=, /=,*=,-=,+=,= Assignment + mathematical

Logical “or” |

Conditional %

Assignment

Used for separating param-
eters in a function call

Comma ,

So, how exactly does this work? Well, suppose that the JavaScript
interpreter runs into the following statement in your script:

alert("Grand total: " + getTotal() + (3 * 4 / 10) +
tax++)

The JavaScript interpreter knows that its job is to evaluate the
statement - so the first thing it does is scan the whole line. When
the interpreter finds the first set of parentheses, it knows that’s
where it needs to start. It thinks to itself, “Okay, first I'll get the
return value from getTotal (). Then I'll evaluate (3 * 4/ 10).
Within (3 * 4/ 10), I'll do the division first, then the multiplication.
Now I'll add one to the tax variable. Okay, the last thing I have to
do is add the whole thing up to come up with a string to display.”

If you don’t want to go the trouble of memorizing the precedence
order, that’s okay. Just group expressions in parentheses. Because
parentheses outrank all the other operators, you can effectively
force JavaScript to override its default precedence order.

Special Operators

A couple of JavaScript operators, typeof and void, don’t really fit
into any other operator category. Take a look for yourself!

typeof

You can apply the typeof operator to any JavaScript object to
find out what type the object is (when you know what type the
object is, you then know what you can do to the object). For
example, if you apply the typeof operator to a string, it returns
"string";if you apply the typeof operator to a number, it

ey

|]

1

|

—

J

—

|

|
-

""'éflr}f

) ¢
t

Special Operators

returns "number"; if you apply the typeof operator to true,
it returns "boolean" — and so on, for every kind of object that
exists. Here’s a glimpse of typeof in action:

typeof "The Bell Jar" // returns "string"

typeof true // returns "boolean"

typeof 69 // returns "number"

typeof document.lastModified // returns "string"

typeof Math // returns "function"

typeof somelVariable // returns variable
type

void

The void operator is a strange beast — it’s used to tell JavaScript
to do nothing. Perhaps you think that there’s not much call for an
operator that does nothing. Well, you’d be right — except in one
pretty important instance: when you want to create and use an
object but bypass its requirements for some reason.

For example, suppose that you want to display an image in your
Web page. Suppose that you also want to recognize when a user
drags her mouse pointer across the image (so that you can display
a different message in the status bar for each section of the image
the mouse pointer passes over).

Well, you can create an image with the HTML tag, but in
order to recognize when a user’s cursor passes over that image,
you also need to define an additional object, called an area.

Now, the reason you need to define an area and an image is
because you want to take advantage of the area’s onMouseQver
and onMouseOut event handlers, but you also want to take
advantage of the image’s surface area. How to get the best of both
worlds? Define both and tie 'em together! The only catch is that
when you define an area (which is nothing more than a big fat
link), it expects you to define a URL to link to. Well, you don’t want
to link to anything. All you want to do is use the area’s
onMouseOver and onMouseQut events.

The solution? Give the area what it wants — a URL definition —
but give it one that does nothing: in a word, give it void! Check out
the following code to see exactly how that’s done.

<MAP NAME="thistleMap">

<AREA NAME="topThistle" COORDS="0,0,228,318"
HREF="javascript:void(0)"

onMouseOver="self.status="'That mouse pointer sure
feels nice'; return true"

onMouseQut="self.status="'Thanks for visiting; come
again!'; return true">

</MAP>

(continued)

Special Operators

(continued)

<IMG NAME="currentImage"
SRC="1images/thistle.gif" ALIGN="MIDDLE"
ALT="[Scottish thistles]" USEMAP="#thistleMap">

String operators

Most of JavaScript’s operators are designed to work with numeric
values. A few, though, are also useful for manipulating strings. In
the following table, stringA has been assigned the value “moo”
and stringB has been assigned the value “cow”.

Operator Syntax Explanation
Addition (+) myString = stringA + stringB myString =
“moocow”
Append (+=) myString = "hairy " += stringB myString =
“hairy cow”
Equality (==) if (myString == "moocow") if myString is
equal to
“moocow”
Inequality (!=) if (myString != "moocow") if myString is
not equal to
“moocow”

Unary operators

Unary operators look a little strange to the uninitiated eye. They're
very useful, though, so it’s worth spending a minute or two to get
familiar with them. In all these examples, x is initially set to 11.

Unary Example (x = 11) Result/Meaning How Come?
! I(x ==5) true (negation) 11isn't equal to 5
- X = -X x = —11 (negation) Turns positive
numbers negative
and vice versa
++ X = X++ x = 11 (increment by 1) ++ afteravaris
applied after
assignment
X = ++X x=12 + + before a var is
applied before
assignment
-- X = X-- x = 11 (decrement by 1) -- after a varis
applied after
assignment
X = --X x=10 -- before a var is

applied before
assignment

| | | |
! |
(-

|

!

— ,
[—

ginlel

Variables

Variables

A variable is a named placeholder for a value. You must do three
things to a variable (if it is to be of any practical use): declare it,
assign a value to it, and access it within its scope. The following
sections show you how.

Accessing variables

After you declare a variable, you can then access it. By accessing a
variable, I mean you can modify, display, or use the variable’s
value in a computation. Here’s an example:

// Variable declaration and assignment
var myTitle = "Princess of the Universe"

/7 %isp]aying the value on the screen in a pop-up
0X
alert("Here is my title: " + myTitle)

// Adding to the value
myTitle += " and everywhere else"

// Comparing one value to another
if (myTitle == "dog catcher") {

alert("Memo to myself: At least I won the
} election!")

Assigning values to a variable

You can assign a value to a variable at the same time you declare
it, or at any time after you declare it:

// Declaring and assigning all at once
var numberOfWineglasses = 6

// Assigning a value later in the program
numberOfWineglasses = 182

// Assigning a nonsensical value; 0K by JavaScript
numberOfWineglasses = "cat food"

Declaring variables

Before you can use a variable, you have to declare it. You declare a
variable in JavaScript by using the keyword var, as shown:

var myNumberVariable
var streetAddress
var anArrayOfJdobTitles

Variables

JavaScript is what’s known as a loosely typed language, which means
that you don’t have to tell the interpreter what kind of value
you're going to assign to a variable right up front. All that you
need is the var keyword and a unique variable name of your choice.

The name of your variable must begin with either a letter or an
underscore. The variable name can contain numbers but no
punctuation marks.

Understanding variable scope

A variable is only valid when it’s in scope, which means that the
variable has been declared between the same curly brace bound-
aries as the statement that’s trying to access it.

For example, if you define a variable named firstName inside a
function called displayReport(), you can only refer to it inside
displayReport()’s curly braces. If you try to use the
firstName variable from inside another function, you get an
error. If you want to reuse a variable among functions (Eek! A
global variable! Quick, call the cops!), you can declare it near the
top of your script, before you declare any functions. That way, the
variable’s scope is the entire script, from the very first opening
curly brace to the last — and all the functions defined within the
script get to access it. Take a look at the following code example:

function displayReport() {
var firstName = document.myForm.givenName.value

alert("Click OK to see the report for " +
firstName)

// Using firstName here is fine; it was de-
clared

// inside the same set of curly braces as the
// alert() method.

}
function displayGraph() {
alert("Here's the graph for " + firstName) //
Error!
// firstName wasn't defined inside this
// function's curly braces!

}

As you can see from the comments in the preceding code frag-
ment, it’s perfectly okay to use firstName inside the
displayReport() function; firstName is in scope anywhere
inside displayReport().It’s not okay, however, to use
firstName inside displayGraph().As far as displayGraph()
is concerned, no such animal as firstName has been declared
inside its scope!

J—

7

J—'—Q

T

e

. r

i

1
i

z
]

HTML Objects:
The Heart of It All

Because JavaScript is an object-based language, much
of the JavaScript code you write involves HTML
objects. Part Il shows the relationship of each object
in the JavaScript object hierarchy to one another,
which provides a good overview of all the objects
available to you. This part, though, is where you find
all the details about the HTML objects used in
JavaScript, the properties and methods that each
object contains, and the event handlers that each
object supports.

The sections in this part are cross-referenced so that
you can look things up in different ways. For example,
if you want to find out about a particular object, you
can find it alphabetized in this part. On the other hand,
if you know the name of a method but can’t remember
what objects are associated with it, check out Part VI,
“Methods: How an Object Behaves.” PartVI refers you
to the objects each particular method supports.

In this part . . .
1 Creating HTML objects (reprise)
+ Invoking an object’s methods

1 Accessing an object’s properties

About Objects

About Objects

TP

The two-bit definition of an object is “a software representation of
some useful thing.” JavaScript objects are no exception: Each of
them are representations of the things that you need to build Web
pages — push buttons, input fields, dates, and so on. Part |
explains how to create each of the HTML objects in detail. This
section focuses on the way these objects can be manipulated (that
is, how their properties can be accessed and their methods
invoked) with JavaScript statements.

For each element, you find three separate sections:
4+ How to create the object
4+ How to access the object’s properties

4+ How to invoke the object’s methods

For more detailed HTML syntax on how to create each object
listed, see also Part I.

Remember that you create objects in HTML, but you work with
objects in JavaScript. Therefore, you should place the code
fragments in “Creating an object” between <HTML>. . .</HTML>
tags. In contrast, you should place the code fragments in the
“Accessing an object’s properties” and the “Invoking an object’s
methods” sections between <SCRIPT>...</SCRIPT> tags.

anchor

An anchor is a piece of text that uniquely identifies a spot on a
Web page. After you define an anchor — say, in the middle of a
page — you (or anyone else for that matter) can set up a link so
that when a user clicks the link, the page loads right where the
anchor is located.

Creating an anchor:

Table of Contents
Accessing anchor properties:
document.anchors.length

Invoking anchor methods:

The anchor object has no associated methods.

-
1
-

—

FT 1 /T T

| |

m

i

area

applet

area

The applet object corresponds to a Java applet embedded in an
HTML form.

Creating an embedded applet:

<APPLET NAME="NervousApplet"

CODE="NervousText.class" width=400 height=50>
<PARAM NAME="text" VALUE="Enter your text here.">
</APPLET>

Accessing applet properties:

The properties available to you depend on the specific Java applet
with which you’re working. One property should be available for
all Java applets, however, and that’s the name property:

document.applets[0].name

Invoking applet methods:

The applet methods available to you depend on the specific Java
applet with which you’re working. Ask the person who developed

the Java applet that you're including in your Web page for a list of
public methods that you can invoke on the applet.

The area object is used to make a specific area of an embedded
image responsive to user events. You can make an area respond to
a click event or to mouse pointer movement events.

Three separate HTML entities need to be defined as part of an
area: an area (of course!), an HTML <MAP>, and an image. A
complete example awaits you in the following code.

Creating an area:
<MAP NAME="thistleMap">

<AREA NAME="topThistle" COORDS="0,0,228,318"
HREF="javascript:displayMessage()"

onMouseOver="self.status="'When you see this mes-
sage, click your left mouse button'; return
true"

onMouseQut="self.status=""; return true">

</MAP>

<IMG NAME="currentImage"

SRC="1images/thistle.gif" ALIGN="MIDDLE"
ALT="[Scottish thistles]"

USEMAP="#thistleMap">

TP

Instead of defining a URL value for the HREF attribute, the line
looks like this:

HREF="javascript:displayMessage()"

This statement tells the JavaScript interpreter that it should
invoke the custom function called displayMessage() when a
user clicks on this area, nof load a URL.

If you want to use the area event handlers onMouseQut and
onMouseQver, but you don’t want anything to happen when the
user clicks on the area, assign the HREF attribute of <AREA> equal
to this: "javascript:void(0)".

Accessing area properties:
No, this isn’t a mistake — areas are stored in the 11nks array.

document.links.length
document.links[0].hash
document.links[0].host
document.links[0].hostname
document.links[0].href
document.links[0].pathname
document.links[0].port
document.links[Q].protocol
document.links[0].query
document.links[0].target

Invoking area methods:

No methods are associated with the area object.

button

A button object creates a push button on an HTML form.

Creating a button:

<FORM NAME="myForm">
<INPUT TYPE="button" NAME="inStateButton"
VALUE="In State" onClick="display(this)">

In this example, the name of the button is inStateButton, and
the text displayed on the face of the button is “In State”. When a
user clicks on this button, the JavaScript interpreter calls the
display() function and passes it one argument: the entire
inStateButton object (denoted by this).

Accessing button properties:

document.myForm.inStateButton.name
document.myForm.inStateButton.type
document.myForm.inStateButton.value

F - ™ ™
] - o .

o

- o N SR N

document

The preceding JavaScript code fragments represent the button’s
name (inStateButton), type (“button”), and value (“In State”),
respectively.

Invoking button methods:

document.myForm.inStateButton.click()
// used to click the button programmatically

checkboy

A checkbox object creates — well, a check box. A check box is
like a toggle switch — its value is always either off or on.

Creating a check box:

<INPUT TYPE="checkbox" NAME="jazzCheckbox"
VALUE="checkedJazz" CHECKED
onClick="display(this)"> Click here if you like
jazz.

In this example, the name of the check box is jazzCheckbox. The
value is “checkedJazz” (which is the value that is submitted to the
CGI program if the check box is checked). The checkbox is automati-
cally checked the first time that it appears to the user; the text
that appears next to the check box is “Click here if you like jazz.”

Accessing check box properties:

document.myForm. jazzCheckbox.checked
document.myForm. jazzCheckbox.defaultChecked
document.myForm. jazzCheckbox.name
document.myForm.jazzCheckbox.type
document.myForm.jazzCheckbox.value

Invoking check box methods:

document.myForm. jazzCheckbox.click()
// used to set checkbox programmatically

document

A document object defines characteristics of the overall body of a
Web page, such as the background color of a page, the default text
color, and so on.

Creating a document:

<BODY BGCOLOR="1ime" TEXT="maroon"

LINK="purple" ALINK="yellow" VLINK="blue"
onLoad="welcome()"

onUnload="goodbye()"> </BODY>

fileUpload

The preceding code creates a Web page with a lime-colored
background (yecch!) and maroon text. Link text appears purple at
first, changes to yellow when a user clicks on the link, and then
turns blue after the linked URL has been loaded. As you can see
from the last two code statements, when the Web page is first
loaded, the welcome () method is invoked automatically; when a
user closes the Web page, the goodbye () method is invoked.

Accessing document properties:

document.alinkColor

document.anchors[0] // array of this document's
anchors

document.bgColor

document.cookie

document.fgColor

doc%yent.forms[index] // array of this document's
orms

document.lastModified

document.linkColor

doc%melf.1inks[1ndex] // array of this document's
inks

document.location

document.referrer

document.title

document.vlinkColor

Invoking document methods:

document.clear()

document.close()
document.open("text/html")
document.write("Some text here")
document.writeln("Some more text here")

fileUpload

A fileUpload object consists of a Browse button and a text field.
To specify a file name, users can either click on the Browse button
and choose from the displayed list of files, or enter a filename
directly into the text field.

Creating a fileUpload object:

<INPUT TYPE="file" NAME="myFileName">

Accessing fileUpload properties:

document.myForm.myFileUpload.name
document.myForm.myFileUpload.type
document.myForm.myFileUpload.value
Invoking fileUpload methods:

The fileUpload object has no associated methods.

]
(e

L
' |

7

e e
. i i : i |] i i ‘
A i - - - S] ‘:

"

L

rr
_ | .

frame |

MRN/y,
S N

form

frame

In Netscape Navigator 3.0, the fileUpTload object is read-only
(you can’t change its properties).

A form is used to gather input from users and to pdst data (includ-
ing user input) to a server for additional processing.

Creating a form:

<FORM NAME="myForm" METHOD="POST" TARGET="_parent"

ACTION="http://altavista.digital.com/cgi-bin/
query?pg=q&what=web&fmt=.&q=JavaScript"

ENCTYPE="multipart/form-data"

onSubmit="return verifyComplete()">

</FORM>

Accessing form properties:

document.myForm.action

document.myForm.elements[0].name

document.myForm.elements[0].value

document.myForm.encoding

document.myForm.length

document.myForm.method

document.myForm.target

document.forms[01// first form defined in the
document

document.forms.length //total # forms defined

Invoking form methods:

document.myForm.reset()
document.myForm.submit()

A frame is a special kind of window. You can think of a frame as
an individual pane of glass — that is, you can have several
frames per regular window or just one. A user can scroll each
frame independently.

Creating a frame:

<FRAMESET ROWS="50%,50%" COLS="40%,60%">
<FRAME SRC="framconl.htm1" NAME="framel">
<FRAME SRC="framcon2.html" NAME="frame2">
</FRAMESET>

Accessing frame properties:
frames.length

frames[0]name
L01 (continued)

hidden image

(continued)

frames[0].length
frames[0].parent
frames[0].self

frames[0].window

Invoking history methods:

history.back()
history.forward()
history.go(-3)

! " | "
i

Invoking frame methods:

frames[0].blur()

frames[0].clearTimeout(timerID)
frames[0].focus()

timerID = frames[0].setTimeout("method(), 5000")

image

The image object in JavaScript corresponds to the HTML
element. The image object represents an image embedded into a
Web document.

e %

ARN/y,
« V¢ At the time of this writing, Internet Explorer 3.0 does not support
hldden the image object.
LI
A hidden element is an input text field that doesn’t appear on-screen. [' - JavaScript provides an Image constructor (the new keyword

described in Part II) that you can use to create and load an image

Creating a hidden element:
<INPUT TYPE="hidden" NAME="markupPercent" VALUE=80>
Pretty straightforward, isn’t it? The preceding line of code defines

a hidden element named markupPercent and stuffs it with the
initial value of 80 so that subsequent calculations can add an 80

o

behind the scenes. You may want to load an image behind the
scenes if you have a large image that you want to load while your
user is doing something else. That way, when it’s time to display
the image, the image will already be loaded into memory so it will
display right away. Here’s how it works:

// To load the image, do this:

|
|-J‘h-’-"«

percent markup to any purchase. (I think you can guess why a
programmer might want to hide a value like this!)

// first, create an image variable
var myImage = new Image()

Accessing hidden properties: ™ // then, load the image into memory
myImage.src = "images/thistle.gif"

document.myForm.markupPercent.name ' -
document.myForm.markupPercent.type

document.myForm.markupPercent.value /7 Finally, to display the image, do this:

document.images[0].src = myImage.src

—

Invoking hidden methods: Creating an image:

The hidden object has no associated methods. <IMG NAME="currentImage"

SRC="1images/jazzman.gif" ALIGN="MIDDLE" ALT="[Jazz
guitarist]"” ’

USEMAP="#jazzMap">

1
-

history

The history object contains a linked list of all the URLs that a
user has visited from within a particular window. This object

provides the list of URLs you see when you select the Go menu L
item in Navigator or Internet Explorer.

Accessing image properties:

document.myForm.currentImage.border
document.myForm.currentImage.complete
document.myForm.currentImage.height
document.myForm.currentImage.hspace
document.myForm.currentImage.lowsrc

1 TRq . , document.myForm.currentImage.name

Q%@g This one’s a freebie; you don’t have to write a lick of code to define document.myForm.currentImage.prototypeName

L

R
- :
-

Creating a history object:

the history object! The history object is defined for you by document.myForm.currentImage.src
- document.myForm.currentImage.vspace
document.myForm.currentImage.width

your Web browser. Each time you load a new Web page, your
browser automatically adds that URL to the history object.

Accessing history properties: Invoking image methods:

history.length No methods are associated with the image object.

|
-

-

link

link

A link is a piece of text (or an image) that loads another Web page
when a user clicks on it. (A link often loads a specific spot, or
anchor, on another Web page.)

Creating a link:

<A HREF="#T0C" onClick="verifyData()"
onMouseQver="displayScrollingText()" >Back to Table
of Contents

Accessing link properties:

document.links.length
document.links[0].hash

document
document
document
document
document
document
document
document

.1inks[0].
.1inks[0].
.1inks[0].
.1inks[0].
.links[0].
.links[0].
.1inks[0].
.1inks[0].

host
hostname
href
pathname
port
protocol
query
target

Invoking link methods:

Neither the 11 nk object nor the 1inks array has any associated
methods. (For more about arrays, see also Part IV).

location

vg,‘ TRAQ*

@9

Think of the Tocation object as a mini-version of the history
object. Instead of holding information on all the recently visited
URLs, like the history object does, the 1ocation object contains
information about just one URL — the one that’s currently loaded.

Creating a location object:

Just like the history object, you don’t have to write any code to
define the 10ocation object —it’s set up for you automatically by
your Web browser.

Accessing location properties:

location.
location.
location.
location.
location.
location.
location.
location.
location.

hash
host
hostname
href
pathname
port
protocol
search
target

{xg;#
[I

Aghh

ﬂmuﬁ

1

Math

Math

%
%

Invoking location methods:

The 1ocation object has no associated methods.

The Math object is the only built-in object in JavaScript. Unlike a
built-in data type (such the ones shown in Part IV, which all
describe a class of thing), the Math object not only describes a
class of thing all right (a mathematical system) — but it also
implements the class. Math contains properties and methods for
all kinds of mathematical constants and functions, such as
logarithms and square roots. Hey, why reinvent the wheel?

Creating a Math object:

You never define the Math object yourself; it’s done for you
automatically. All you have to do is reference it, as shown in the
following examples.

Accessing Math properties:

Math.E
Math.LN2
Math.LN10O
Math.LOG2E
Math.LOG10E
Math.PI
Math.SQR1_2
Math.SQRT2

Invoking Math methods:

Math.abs(23)

Math.acos(123)
Math.
Math.
Math.
Math.
Math.
Math.
Math.
Math.
Math.
Math.
Math.
Math.
Math.
Math.
Math.
Math.

havigator

?ﬁ" TMQ{—

@

The navigator object contains information about the version of
Navigator currently in use.

Creating a navigator object:

Ybuneverdeﬁnethenavigatorobkmtyourﬁﬂﬁifsdoneforyou
automatically when you bring up your Web browser.

Accessing navigator properties:

navigator.appCodeName
navigator.appName
navigator.appVersion
navigator.complete

// The mimeTypes array elements must be accessed
// through the array, as shown
navigator.mimeTypes[0].description
navigator.mimeTypes[0].enabledPlugin
navigator.mimeTypes[0].suffixes
navigator.mimeTypes[0].type

// The plugins array elements must be accessed
// through the array, as shown
navigator.plugins[0].description
navigator.plugins[0].filename
navigator.plugins[0].length
navigator.plugins[0].name

navigator.userAgent

Invoking navigator methods:
navigator.javaEnabled()

password

A password object is a special text input field that displays
asterisks on-screen in place of the characters that the user
actually types, enabling users to type in sensitive information (like
a password or financial information) without fear that someone
peeking over their shoulder will get a glimpse.

Creating a password:

{INPUT TYPE="password" NAME="userPassword" SIZE=15
VALUE="secret!">

Accessing password properties:

document.myForm.userPassword.defaultValue
document.myForm.userPassword.name
document.myForm.userPassword.type
document.myForm.userPassword.value

i
-

(f »
| %

. | —
i -

| S S T T

J

—

radio

Invoking password methods:

document.myForm.userPassword.focus()
document.myForm.userPassword.blur()
document.myForm.userPassword.select()

plugin

radio

Think of the p1ugin object as the space on an HTML form where
the output of a plug-in appears. The p1ugin object has no associ-
ated properties or methods. To get information about plug-ins, you
must access the navigator property called plugins.

Creating an embedded plugin:

<EMBED NAME="myEmbed" SRC="http://www.adobe.com/
acrobat/3beta/PDFS/Times.pdf" WIDTH=450
HEIGHT=450>

</EMBED>

Accessing plugin properties:

No properties are associated with the p1ugin object. Use the
navigator.plugins array to access plugin properties.

Invoking plugin methods:

No methods are associated with the p1ugin object.

A radio button is a toggle switch, something like a check box.
Unlike a check box, though, radio buttons are often grouped in
sets to allow users to select a single option from a list.

Creating a radio button:

What's your favorite time of day?
<INPUT TYPE="radio" NAME="timeChoice"
VALUE="morningSelected" CHECKED

onClick="showValues(0)"> Morning
<INPUT TYPE="radio" NAME="timeChoice"
VALUE="afternoonSelected"
onClick="showValues(1)"> Afternoon
<INPUT TYPE="radio" NAME="timeChoice"
VALUE="eveningSelected"
onClick="showValues(2)"> Evening

Accessing radio properties:

document.myForm.timeChoice[index].checked
document.myForm.timeChoice[index].defau]tChecked
document.myForm.timeChoice.length // # of radio
buttons
(continued)

reset

select

reset

(continued)
document.myForm.timeChoice[index].name
document.myForm.timeChoice[index].type
document.myForm.timeChoicelindex].value

Invoking radio methods:
document.myForm.timeChoicel[index].click()

A reset object is a special kind of button. When a user clicks on a
reset button, it clears out all the user-input values in a form and
resets each field to its default value.

Creating a reset button:

<INPUT TYPE="reset" NAME="resetButton"
VALUE="Reset"
onClick="reinitializeFormulas()">

Accessing reset properties:

document.myForm.resetButton.name
document.myForm.resetButton.type
document.myForm.resetButton.value

Invoking reset methods:
document.myForm.resetButton.click()

The select object is used to display both a single-selection list
box and a scrolling multiple-selection list box.

Creating a select element:

<{SELECT NAME="fave" SIZE=3 MULTIPLE
onBlur="displayResult(this)">

<OPTION VALUE="popChosen" SELECTED> pop

<OPTION VALUE="rockChosen" > rock))

<OPTION VALUE="dogsChosen" > dogs barking Jingle
Bells

<OPTION VALUE="rapChosen" > rap

<OPTION VALUE="showChosen" > show tunes)

<OPTION VALUE="africanChosen" > African classical

</SELECT>

Accessing select properties:

document.myForm.fave.length
document.myForm.fave.name
document.myForm.fave.options
document.myForm.fave.selectedIndex
document.myForm.fave.options[index].defaultSelected

— 7

—

N [

-

tex

document.myForm.fave.options[index].index
document.myForm.fave.options.length
document.myForm.fave.options[index].selected
document.myForm.fave.options[index].text
document.myForm.fave.options[index].type
document.myForm.fave.options[index].value

Invoking select methods:

document.myForm.fave.blur()
document.myForm.fave.focus()

Submit

text

A Submit object is a special kind of button that submits all of the
user input values on a form to the server when a user clicks on the
button.

Creating a Submit button:

<INPUT TYPE="submit" NAME="submitButton"
VALUE="Submit Form" onClick="verifyInput()">

Accessing submit properties:

document.myForm.submitButton.name
document.myForm.submitButton.type
document.myForm.submitButton.value

Invoking submit methods:

document.myForm.submitButton.click()

Clicking on the Submit button sends a form to the URL value specified
in the form’s HTML ACTION attribute. The data is sent as a series
of attribute-value pairs, each pair separated by an ampersand (&).

The text object is a single-line input field. (If you want a
multiple-line input field, see the textarea object, defined in
the following section).

Creating a text element:

<IN%UT TYPE="text" NAME="TastName" VALUE="your name
ere"
SIZE=30 onBlur="validate()" onChange="validate()">

Accessing text properties:

document.myForm.lastName.defaultValue
document.myForm.lastName.name
document.myForm.]astName.type
document.myForm.lastName.value

textarea window

Invoking text methods: SAMP . windowVar = open("URL", "windowName",
document.myForm.]astName.gocus() -~ ["windowFeatures™])
document.myForm.lastName.blur() [‘ m . _ w s v oow . "
’ yOtherWindow open("win2.html", "secondWindow",
document.myForm.lastName.select() "toolbar=yes, location=yes, directories=yes,
status=yes, menubar=yes, scrollbars=yes,
t t i resizable=yes, width=250, height=400")
extarea [4
X Accessing window properties:
A textarea object is just like a text object, except that instead defaultStatus
of defining one scrolling input line, the textarea object defines a - = frames
multi-line scrolling text box. J] g;g th
Creating a textarea object: opene E
aren
<TEXTAREA NAME="directions" ROWS=4 COLS=60 B .J Ee]f
onBlur="validate()" onChange="display()" status
onFocus="welcome()" onSelect="changeMode()"> - top
This is default text. You can type right over it, window
add to it, cut it, paste it, or copy it. - i
</TEXTAREA> i Invoking window methods:
Accessing textarea properties: g} e r% g "Form will be sent now...")
ur
document.myForm.directions.defaultValue ™ close()
gocument.myForm.d1rect10ns.name | confirm("Do you really want to quit?")
ocument.myForm.directions.type focus ()

document.myForm.directions.value myOtherWindow = open(""

"toolbar=yes, location=yes, directories=yes,
status;¥es, menubar=yes, scrollbars=yes,

. . resizable=yes, width=250, height=400")
document.myForm.directions.focus() prompt("Enter the file name:", "testfile.txt")
document.myForm.directions.blur() scrol1(50, 100)

"secondWindow",
document.myForm.directions.select()] i timeoutID=setTimeout("displayAlert()", 2500)

Invoking textarea methods:

clearTimeout(timeoutID)
myOtherWindow.write("Here is myOtherWindow.")

window

«é‘%""@f The window object is the top-level granddaddy object for all |

document objects, and you're given the first one gratis, compli-
ments of the <BODY>. . .</BODY> tag pair. If you want to create
extra windows, the following example is the way to do it.

TP If you do create multiple windows, remember to tack the new
window’s name (myOtherWindow, for example) in front of any
associated property or method you access so that the interpreter
knows which window you’re referring to at all times.

Creating a window:

Here’s the generic syntax for creating a window, followed by an
example:

t ‘ i i
i |
L

JavaScript For Dummies Quick Reference

o
-

—
B

\
ﬁ |

Data Types: Buildinq
Basic JavaScript
Objects

Some kinds of objects, such as dates and strings, are
really basic; they’re so basic, in fact, that almost every
script you'll ever write will probably contain a
reference to them. Because they’re so common,
JavaScript thoughtfully provides built-in classes for
them — but because JavaScript is loosely based on C,
these classes are still referred to by the conventional
name of data types.

Unlike the objects that you find in Part IIl, JavaScript
data types don’t have corresponding HTML tags —
they’re pure JavaScript constructs. You declare them
inside the <SCRIPT>...</SCRIPT> tag pair by using
JavaScript statements, as you can see in the following
sections.

In this part . . .
v Creating objects based on built-in data types

1 Accessing object properties

v~ Invoking object methods

, «

I
il

Array

An Array is an indexed list of things called elements. Element
values can be whatever you want them to be — numbers, strings
or even other objects. You can fill an array with elements when
you create it by passing values to the array constructor, or you
can create an empty array and fill it with elements later.

]

Arrays are useful whenever you want to keep track of a group of
related items.

Syntax:

arrayName = new Array([elementl, element?,
elementN | arraySizel)

Example:

var 1istOfPets = new Array("dog",
1ist0fPets[3]="bird"

"cat", "gerbil")

// %1%na1s that 2 initial elements are expected,
u
// the interpreter won't complain if you assign
more

var favoriteFoods = new Array(2)
favoriteFoods[0]="frozen yogurt"
favoriteFoods[1]="barbecued beef"
favoriteFoods[2]="stir-fry" // 3 elements is okay

var toDolList = new Array()

Accessing array properties:

\

favoriteFoods.length
favoriteFoods.prototypeName

Invoking array methods:

favoriteFoods.join()
favoriteFoods.reverse()
favoriteFoods.sort()

The first two lines of the preceding example code create an array
called 11st0fPets, which contains four entries: the first entry is
“dog”, the second, “cat”, and so on. Here’s a conceptual look at the
1ist0fPets array:

[0] "dog" // first element in the 1i1st0fPets array
is “dog”
[1] "cat" // second element in the 1ist0fPets

array is “cat”

L

R IR ™

Date

Date

[2] "gerbil" // third element in the 1ist0fPets array
is “gerbil”
[3] "bird" // fourth element in the 11st0fPets array

is “bird”

A Date object in JavaScript is just what it is in real life — a
specific time including second, minute, hour, day, month, and year
information. Any time you work with dates, you should use the
Date object. You can create dates based on the current time or on
values that you provide. You can modify and manipulate the date
then to your heart’s content.

Syntax:

dateName = new Date()
// if no parameters are passed to the constructor,

// the result is the current date/time

dateName = new Date("month day,
year hours:minutes:seconds")
dateName = new Date(year, month, day)
dateName = new Date(year, month, day, hours,
minutes, seconds)
Example:
var today = new Date()
var birthday = new Date("October 21, 1973
01:40:00")
var graduation = new Date(1990, 8, 6)
var wedding = new Date(92, 07, 12, 10, 30, 21)

Accessing Date properties:

You access the contents of a Date a little differently than you do
the contents of other data types. Accessing Date properties
(except one) is done by calling methods, as you can see in the
following example.

One property, called prototype, is different from all the rest. You
can use a prototype to create a new property for a Date object,
and you can name the new property you create anything you want.
For example, every instance of Date has built-in properties like
hours, minutes, seconds, day, month, and year. Using prototype,
you can add a brand-new property that’s meaningful to you to all
instances of Date. Check out the following example to see how to
add a property called description to a date.

-

|

-

// create a new date variable called "today"
var today = new Date()

// create a new property for date objects called
// "description”
Date.prototype.description = null

// assign a value to the new date object property
today.description = "Today I Tost my first tooth!"

In the preceding code, you first add the description property to
the Date object and then add a value for the description
property. For example, "Today I lost my first tooth!"is
defined for the instance of Date called today.

Invoking Date methods

If you think about it, you can basically do only two things with a
property after it’s defined: You can gef the value of the property to
see what it is, and you can set the value of the property. Data types
have predefined properties; you never have to define them
yourself. All you have to worry about is getting values (which, for
instances of Date, you do with what’s affectionately known as
getter methods, or getters for short) and setting values (using setter
methods, or setters).

Date getters:

birthday.getDate()

birthday.getDay()

birthday.getHours()

birthday.getMinutes()

birthday.getMonth() // subtracts 1 from the correct
value

birthday.getSeconds()

birthday.getTime()

birthday.getTimeZoneoffset() // undefined in
Navigator 2.0

birthday.getYear()

birthday.toGMTString()

birthday.tolocaleString()

Date.UTC(1983, 6, 24, 2, 51, 8)

Date setters:

birthday.setTime(Date.parse("January 7, 1997"))
birthday.setDate(21)

birthday.setHours(3)

birthday.setMinutes(59)

birthday.setMonth(11)

birthday.setSeconds(50)
birthday.setTime(identicalTwinsBirthday.getTime())
birthday.setYear(82)

Option

ﬂ

|

—
I» . 4

1

|
-

1

D o o o e om o o e

- = = =

[

-1
!

Function

In Part V, you see how you normally declare functions. In Naviga-
tor 3.0, you can use an alternative way to create a function — you
can use the built-in Function object.

Syntax:

functionName = new Function([argl, arg?2, ... argh],
functionBody)

Example:

var calcDogYears = new Function ("age", "return age
*7")

alert("If Spot is 4, he's " + calcDogYears(4) +
" in people years")

The preceding example code defines a variable called
calcDogYears, of type Function, which takes one parameter
(age), and returns a value (specifically, whatever the value of age
is, multiplied by seven). Then the function is called like this:
calcDogYears(4)

When you declare a function, JavaScript compiles it once. On the
other hand, when you create a function by using the Function
object, the JavaScript interpreter has to evaluate the function each
time it’s called. You gain flexibility with the Function object
because you can create new functions on the fly (perhaps based
on some user input). However, you pay a price in reduced effi-
ciency by using the Function object — your script may take
longer to execute.

Accessing Function properties:

calcDogYears.arguments[0]
calcDogYears.arguments.length
calcDogYears.prototypeName

Invoking Function methods

The Function object has no associated methods.

Option

You can use an 0ption object to represent one of the options
assigned to a single- or multiple-selection list box (a select
element). You create the Option object first and then insert it into
the associated select element’s options array.

TiP

- Option

The Option constructor accepts four optional arguments, as
shown in the following table:

Optional Arguments for the Option Constructor

optionText The text to display in the select list next to this option

optionValue The value to be sent to the server when this option

is selected

defaultSelected Whether this option should be selected by default
(true or false)

selected Whether this option is currently selected (true

or false)

Syntax:

optionName = new Option(LoptionText, optionValue,
defaultSelected, selected])
selectName.options[index] = optionName

Example:

var blues = new Option("Blues music", "blues",
true, true)
document.myForm.musicSelection[0] = blues

You can delete an Option from the options array of aselect
element like this:

document.myForm.musicSelection[0] = null

Deleting an element in an array causes the array to be compressed
together, so if you delete the second element of an array contain-
ing three elements, the array then holds two elements — the first
and the third.

Accessing Option properties:

blues.defaultSelected
blues.index
blues.prototypeName
blues.selected
blues.text
blues.value

Invoking Option methods

No methods are associated with the option object.

-

|
T
]

L

r
il

i"

F

i i .

String

A String object is neither more nor less than a series of charac-
ters, usually surrounded by quotes, like this: "Ralph”,
"Henrietta and Bugsy", "123,456,789.00",0r "1600
Pennsylvania Avenue". Using strings is the only way you can
pass pieces of text around inside JavaScript. Unless you expect to
do some arithmetic operations on a value, you probably want to
work with the value in string form, which you can see exactly how
to do in this section.

Syntax:

Two ways exist to create a string. One way is to use the built-in
String data type; the other way is simply to surround the string
value with double quotes ("1ike this"). Strings can be stored in
variables but they don’t have to be; when strings are not stored in
variables, they’re called string literals.

stringName = new String("some string") // one way

stringName = "“some string" // another way

Example:

var lastName = "Smith" // a string variable

var firstName = new String("Barney") // a string
variable .

alert("Millions, including the " // a string
literal

+ TastName + .
"'s, enjoy JavaScript daily with their
morning pastry.")

Accessing String properties:

lastName.length

String.prototype.description = null

middleName = new String("T.J.")

middleName.description = " T.J. doesn't actually
stand for anything."

Invoking String methods:

lastName.anchor("tableOfContentsAnchor™")
lastName.big()

lastName.blink()

lastName.bold()

lastName.charAt(3)

lTastName.fixed()
lastName.fontcolor("springgreen™)
lastName.fontsize(7)
lastName.indexOf("i")

(continued)

String

(continued)
"Ralph".italics()
"Ralph".lastIndex0f("r")
"Ralph".Tink("http://www.netscape.com")
"Ralph".small()
"Ralph".strike()
"Ralph".sub()
"Ralph".substring(0, 3)
"Ralph".sup()
"Ralph".tolowerCase()
"Ralph".toUpperCase()

|

v

!

1
L

-

Functions

A function is nothing more than a named group of
JavaScript statements that, when called, execute all at
once, Unlike methods, which are always associated
with a particular object’s data, functions don’t belong
to any particular object. Instead, functions adopt the
values you pass to them (called arguments) when you
invoke the function.

In this part . . .

1+ Understanding functions

v Creating your own custom functions

v~ Using functions to create instances of objects
v Calling built-in functions

About Using Functions

About Using Functions

TP

A function is nothing more than a named group of JavaScript
statements. Every time you use, or call, the function, all the
statements in the function are executed in one fell swoop. Al-
though JavaScript provides a handful of built-in functions, you're
not nearly as likely to use them as you are to use the custom
functions that you define. You can find a complete list of all the
built-in JavaScript functions, as well as steps for how to create
your own functions, later in this part. Whether they’re built-in or
custom-designed, though, you call all functions (with the exception
or construction functions) the very same way.

Calling a function
Remember, you must first define a function before you can call it.

Suppose you have access to a function called calculateTotal ()
(maybe you borrowed it, maybe you wrote it, maybe you pur-
chased it). The purpose of this function is to calculate a total price
based on the number of items a user wants to order and the price
of each item.

Not surprisingly, this function takes two input parameters: one for
the price, and the other to represent the number of items.
calculateTotal () returns a number.

When you want to call a function, it’s essential that you know
three things:

4 The correctly spelled name of the function
4 The number and type of parameters the function expects

4+ What the function is supposed to return; for example, a
number, a string, or whatever

The best way to find out the answer to these questions is to look
at the function definition. If you created the file, the definition
should be somewhere near the top of the HTML file. (Of course, if
the function you're interested in calling is one of the built-in ones,
it won’t be defined in the HTML file — it’s built right in! See also
“Built-in Functions” later in this part for details on calling built-in
functions.)

Since you know the name of the function (it’s calculateTotal ()),
what it accepts (two numbers, one for the number of items and
one for the price), and what it returns (a number), you can call the
function, as shown in the following code:

var myPrice = calculateTotal(3, 19.95)

—
|

- . a B B - =

.

-

] ¥

"
il

About Using Functions

ARN/y,
NG

Defining a function

Creating, or defining, a function is easy as pie (whoever coined
that phrase must have been better at rolling out pie crust than I
am!). Here’s the generic syntax for a function declaration:

function aName([parameterll, parameter]
.., parameter]){
Statements
}

Here’s how the calculateTotal () function that was called in
the preceding section may have been defined:

function calculateTotal(numberQOrdered,
var result =
return result

itemPrice) {
numberOrdered * jtemPrice

}

As you’d expect, this function multiplies the value for
numberOrdered by the itemPrice and returns the result. See
also “Creating a Custom JavaScript Function” later in this part.

Returning values

The return keyword is used to hand a value from a function back
to whatever line of code called the function in the first place. The
calling line of code can then use the returned value for anything it
wants (to display it, use it in further calculations — that kind of
thing). Technically, a function doesn’t have to return a value but,
in practice, most of them do. Here’s the syntax for return:

return expression

You can see by the syntax that a function can return an expres-
sion, and an expression can be just about anything: a variable, a
statement, or a complex expression. Check out these examples:

// returning a variable
return calculatedResult

// returning a statement
return (inputValue * 10

// returning a complex expression
retggg (someValue / 100 + ((anotherValue * 55) %

Make sure that the return statement is the very last statement in
the body of your function. After all, return means just that — return.
When the JavaScript interpreter hits the return statement, it
returns to whatever line of code called it, right then and there, and
continues interpreting the script. If you've placed statements inside
the function after the return statement, they’ll never be evaluated.

Built-in Functions

Built-in Functions

“Creating a Custom JavaScript Function,” later in this part,
describes how to create your very own functions. The handful of
functions in this section, though, are freebies — they’ve already
been created and are ready and waiting for you should you ever
want to call them. Read on for real-life examples.

escape () — encodes a string

Use the escape () function to encode special characters such as
spaces, tabs, dollar signs, hash marks, exclamation points, and so
on — so that the characters can be sent safely from one program
(your Web page) to another program (a CGI program on a server).
Then you can use unescape () on the other side, inside the CGI
program, to decode the characters.

The string that returns from escape() is in the form "%xx",
where xx is the ASCII encoding of each character in the argument.
The string argument must be a nonalphanumeric string in the ISO
Latin-1 character set (which, translated into English, means any
character that’s not an alphabetic character or a number). If you
pass escape() a string containing numbers and punctuation
marks by mistake, like this:

escape("67%@X")

escape() doesn’t even attempt to encode the string — the
function just returns the same string that you sent it.

Syntax:
escape(string)

Example:

encodedStringToPass = escape("& ")
// The above statement will return "%26%20"

eval () — evaluates a string

The eval () function evaluates a string that contains a JavaScript
phrase (as opposed to a regular old JavaScript phrase that’s not
inside a string) and returns the value. Sometimes the application
of this function is really straightforward: Someone enters a
number into a text field (for example, “82345™) and you need to
turn the value into an integer before you can use it in any numeric
computations. (See also “isNaN()” in the following section.) Other
times, the application can be a bit more sophisticated, as shown in
the following example.

i
| - I
a B

- r

!

=1

g

|

1

-

Built-in Functions

Syntax:
eval(string)

Example:
var totalPrice = "((numberOrdered * price) * tax)"
if (noTaxRequired) {

totalPrice = "(numberOrdered * price)"

}

/] totalPrice prints out as a numeric value,
// not the string you see above
document.write(eval(totalPrice))

The preceding code snippet evaluates totalPrice (which has a
string value) and displays the result on-screen.

isNaN () — is not a number

The isNaN() function lets you determine whether a value is Not a
Number. (Get it — isNaN?) This function returns true, or 1, if the
specified testValue is not a number. The function returns false,
or 0, if the testValue is a number. Your fifth-grade English
teacher was right — double negatives are confusing! Unfortu-
nately, many programming languages make liberal use of them.

Syntax:
isNaN(testValue)

Example:

if (isNaN(agelnputValue)) {
a]izt("P1ease enter a number for the age
field.")

parseFloat () — turns strings
into floating-point numbers

A floating-point number is any number that has a decimal in it
(19.95, for example). Surprisingly, it’s handy at times to be able to
turn a string into a floating-point number. For example, what if you
have the value "78.95" in one of your input fields and you want
to use it in some calculations? As it stands, you can't; it’s a string
(you know it’s a string because it’s got quotes around it), and you
can’t do much in the way of mathematical calculations on strings.
The solution is to convert the string value to a floating-point value
by using the parseFloat () function and then perform your
calculations.

Built-in Functions

If the string argument that you give parseFloat() can’t be
converted completely, the parseFloat() function behaves in one
of two ways:

4+ If the very first character can’t be converted, parseFloat()
returns "NaN" (Not a Number).

4 If the first character can be converted but a subsequent
character can’t, parseFloat () returns the floating-point
value of everything it could convert, up until it encountered
the invalid character.

Valid characters for the string argument include the numbers 0
through 9, plus (+), minus (-), decimal (.), and exponent (E).

Syntax:
parseFloat(string)

Example:

function isANumber(inputValue){
answer=true
for (var i=0; i<inputValue.length; i++) {
if ((inputValue.charAt(i) != "0") &&
: IparseFloat(inputValue.charAt(i))) {
~answer=false
break

}
return answer

}

The function in this example returns false if the argument sent to it
is not a number, and frue if it is a number. All the action is happen-
ing inside the i f statement (which is itself buried inside a for
loop). The i f statement looks through the input value one
character at a time and stops the minute that it encounters a
character that can’t be represented as a number.

parselnt () — turns strings into integers

Use the parseInt() function to turn specified string and radix
arguments into an integer.

A radix isn’t a strong-tasting root; it’s a representation of a num-
bering system. The radix argument tells parseInt () which base
you want the string converted to — for example, decimal (radix =
10), octal (radix = 8), hexadecimal (radix = 16), binary (radix = 2),
and so on. Fortunately for the nongeeks among us, decimal is the
default. If you don’t specify a radix, the parseInt () function
returns an integer in good old base 10, the very same numbering

|

Y

]
|
!

i
{

1 M1 M/ M

|

-

Built-in Functions

system human beings use to communicate. (The parseInt()
function does convert strings to integers of different bases,
depending on what type of character is first in the string.)

If the string argument that you give parselnt () can’t be con-
verted completely, the function behaves in one of two ways:

+ If the very first character can’t be converted, parselnt()
returns "NaN" (Not a Number).

+ If the first character can be converted but a subsequent
character can’t, parseInt () returns the integer value of
everything that it could convert up until it encountered the
invalid character.

Valid characters for the string argument include the numbers 0
through 9 plus any other characters that are allowed by the radix
you choose.

Syntax:
parselnt(string [, radix])

Example:

parseInt("F", 16)
parselnt("17", 8)
parseInt("15", 10)

; base 16; returns 15

/
parseInt("15.99", 10) ;

/

/

/ base 8; returns 15
/ base 10; returns 15
/ base 10; returns 15
/ base 10; returns 123
/ base 2;

parselnt("123")

parselnt("1111", 2) returns 15

unescape () — decodes a string

As you can probably guess, unescape() is the opposite of
escape(). The escape() function encodes (or escapes) a string,
and unescape () decodes (or unescapes) a string. The string
argument can be in either of two forms:

4+ % xx, where xx is an integer between 0 and 255

4+ A hexadecimal number between 0x0 and 0xFF

The returned string will be a series of characters in the ISO Latin-1
character set (better known as the “non-numeric, non-punctua-
tion-mark character set”).

Syntax:

unescape("string")

Example:

decodedString = unescape("%26%20") // returns "& "

Creating a Custom JavaScript Function

Creating a Custom JavaScript Function

;

;

%

To create, or declare, a function in JavaScript, you need to use the
function keyword as shown in the following example:

function functionName([parameter] [, parameter]
..., parameterl) {
statements
return returnExpression

}

As you can see in the preceding syntax, functions can accept
parameters (also called arguments) — but they don’t have to (the
square brackets, as always, denote optional items). Here’s the
declaration for a function that accepts no parameters:

function displayCopyright() {
alert("The content in this Web page is copy-
righted by the XYZ Corporation.”

return true
}

And here’s how you might call it:

<INPUT TYPE="button" NAME="displayCopyButton"
VALUE="View Copyright Info"
onClick="displayCopyright()">

With a fived number of parameters

Here’s an example of a function named computeTax(), that
requires two parameters: price and taxRate.

function computeTax(price, taxRate) {
return (price * taxRate)
}

<INPUT TYPE="button" NAME="myButton" VALUE="Press

me"
onClick="'computeTax("19.95", .08)'>

With a variable number of parameters

You don’t have to do anything special to declare a JavaScript
function that accepts a variable number of parameters. All you
need to do is send however many parameters you want to send to
a regular function. Then, in the body of the function, you can capture
all of the parameters and process them as you see fit. For example:

function myFunction(inputValue) {
for (var i=0; i < myFunction.arguments.length;

r—
i

|

{

]

m1
i B BN e e e e B G Y e el e

o

Functions that Help You Create and Work with Objects |

it+) |
alert("Here's one: " +
myFunction.arguments[i])
}
}

<INPUT TYPE="button" NAME="myButton" VALUE="Press
mell

onClick="myFunction("arfie", "barfie", "snarfie")'>

You can see from its definition that myFunction() expects

just one parameter: inputValue. However, the function is being

called in the onC11ck event handler with three values — "arfie",

"barfie",and "snarfie".So, myFunction() quickly figures

out how many values were actually passed by examining the value
of myFunction.arguments.length. The function then proceeds
to display each of the three values to the user.

Functions that Help You Create
and Work with Objects

When used in conjunction with a custom-built function that
defines a new type of object, the new operator enables you to
create an instance (or a dozen instances) of that type of object.
Here’s how it works. First, take a look at a function that defines a
customer object. You can see from looking at this function that
every customer instance that you create will have an associated
name, age, sex, and occupation:

function customer(inputName, inputAge, inputSex,
inputOccupation) {
this.name = inputName
this.age inputAge
this.sex inputSex
this.occupation = inputOccupation

}

Now that there’s a “mold” available for creating customers, all you
need to do is use it. You can create as many customers (okay,

technically, instances of objects representing customers) as you like
by using the new keyword, as you can see in the following section.

new

(Technically, new isn’t a function at all; it’s an operator. It works
pretty much like a function, though, which is why it’s presented in
this section.)

To create two separate objects representing customers, here’s
what you do:

“vg,“ TR4, A

ST,

MR

ﬁgggf

Functions that Help You Create and Work with Objects

var firstCustomer = new customer("Junior Samples",
56, "M", "car dealer")

var secondCustomer = new customer("Margaret
Mannfred", 34, "F", "contractor")

this
You may have noticed the this keyword in the customer function

declaration shown in the code for defining a customer object.
Then again, maybe you didn’t, so here it is again:

function customer(inputName, inputAge, inputSex,
inputOccupation) {
this.name = inputName
this.age = inputAge
this.sex = inputSex
this.occupation = inputOccupation

}

In the preceding example, this is shorthand for the customer()
function. When the JavaScript interpreter encounters the this
keyword, the interpreter already knows it’s inside a function
called customer(); so it automatically substitutes customer ()
for the this keyword. That way you don’t have to keep spelling
out the whole function name yourself. (It also makes the code
easier to read.)

with
with is a kind of shorthand that you can use to save yourself a few
keystrokes. When you want to refer to several attributes of the

same object (for instance, the attributes TastModified, 1oca-
tion, and title of the document object), instead of writing this:

document.writeln(document.lastModified)
document.writeln(document.location)
document.writeln(document.title)

you can write this:

with (document) {
writeln(lastmodified)
writeln(location)

} writeln(title)

The JavaScript interpreter is satisfied with (and responds identi-
cally to) either version.

For more details about using functions in JavaScript, see
JavaScript For Dummies, by yours truly, published by IDG Books
Worldwide, Inc.

|

|

;"1

-
|

i
-

{
-

1
™

Methods: How an
Object Behaves

This part lists every method available to you in
JavaScript.

In this part . . .

1 Getting familiar with the methods available to
you in JavaScript

+* Deciding how (and when) to call each method

abs

Methods

TP

A method is just like a function (see also Part V for more on
functions). Unlike functions, however, methods access only one
object’s data — the object with which the method is associated. A
method’s name is typically a verb that describes what the method
does to its associated object (for example, b1ink(), blur(), and
click()). As you see in the upcoming examples, you invoke
methods by specifying the fully qualified (that is, the complete)
name of the object to which the method belongs.

Take the c11ick() method, for example. If you have three buttons
on a form — buttonOne, buttonTwo, and buttonThree, all of which
support the c11ick() method, how would the JavaScript inter-
preter translate c11ick() by itself? It couldn’t! You have to include
the method to specify which button you want to click on, like this:
document.myForm.buttonOne.click().

The only exception to this format is the window object, which
doesn’t usually need to be specified explicitly when you call one of
its methods.

Several of the String methods that you run across in this part are
identical to selected HTML tags in terms of their results. For
example, two ways exist to make text on a Web page appear in big
font, and each way is equally effective:

document.write("Here is
some big text".big())

4 A JavaScript statement:

<BIG>Here is some big
text</BIG>

4 An HTML statement:

Whenever you have a choice between using an HTML tag and a
JavaScript statement to perform the same task, ask yourself
whether you want to perform the task based on some user input. If
so, opt for the JavaScript statement; if not, the HTML tag will
suffice.

abs

Use the abs () method of the Math object to return the absolute
value of a number.

Syntax:
Math.abs(number)

Example:
var myResult = Math.abs(1)

—

anchor

TP

acos

Use the acos () method of the Math object to return the arc
cosine (in radians) of a number.

Syntax:
Math.acos(number)

Example:

var myResult = Math.acos(1)

alert

Use the alert () method of the window object to display a
pop-up dialog box that contains two elements: a message that
you define and an OK button.

Syntax:
alert("message")

Example: .
alert("Your order total is " + getOrderTotal())

anchor

Use the anchor () method of the Strj ng object to identify a
string as an HTML anchor. After you define a string as an anchor,
you can use the string as the target for a hypertext link. See also
the “Link” section in Part III.

Syntax:

string.anchor(anchorName)

Example:
"Table Of Contents".anchor("TOC_anchor")

Using the anchor () method lets you define an anchor inside a
JavaScript script; the <A> .. . tag pair is the way to define an
anchor in HTML. For example, you can replace the preceding
example with the following HTML code:

Table of Contents

Most programmers use HTML tags to define anchors unless they
want to create a link on the fly, based on some user input. To
define a link based on user input, savvy JavaScript authors use the
anchor () method instead.

asin

asin
Use the asin() method of the Math object to return the arc sine
(in radians) of a number.

Syntax:
Math.asin(number)

Example:
Math.asin(l)

atan

Use the atan () method of the Math object to return the arc
tangent (in radians) of a number.

Syntax:
Math.atan(number)

Example:
Math.atan(1l)

atan2

Use the atan2 () method of the Math object to return a numeric
value for the angle (theta component) of the polar coordinate

(1, theta) that corresponds to the specified Cartesian coordinate
(%, y). (If you understood that sentence, congratulations! You're a
rocket scientist.)

Syntax:
Math.atan2(number)

Example:
Math.atan2(90, 15)

back

Use the back () method of the history object to load the
previous URL in the history list.

Syntax:
history.back()

Example:
history.back()

—
i

J

o
- — ~ g.,v,
i & B & =

e 7

-

—

oo

—
a I B A

TP

TIP

TiP

Invoking the back () method of the history object produces the
same result as history.go(-1). Choosing Go=>Back from the
Navigator or Internet Explorer menu also produces the same
result, for that matter. If you know for sure that you only want to
go back one URL, the history.back() method is the way to go;
if you have to calculate how many URLs to go back, history.go()
is a better choice.

big
Using the big () method of the String object enables you to

display a string in big (size 4) font. (To specify font sizes from 1
through 7, see also “fontsize”, described later in this part.)

Syntax:
string.big()

Example:

document.write("This is gonna be big!".big())

Using the big () method of the String object produces the same
result as surrounding text with the <BIG>...</BIG> HTML tag
pair. Typically, your choice of which method to use depends on
whether you know ahead of time what text you want to display in
big font. If you know what text should appear in big font, the HTML
tag works fine. On the other hand, if you need to display the text
dynamically, the string.big() method is your best bet.

blink

Using the b1ink () method of the String object enables you to
display a blinking string.

Syntax:

"string.blink()

Example:
document.write("FREE".bTlink())

Using the b1ink () method of the String object produces the
same result as surrounding text with the <BLINK>. . .</BLINK>
HTML tag pair.

blur

Use the b1ur () method of the frame, password, select, text,
textarea, or window objects to remove focus from those objects.

sRN/y,
NG

TP

bold

(When you click on a form element and it lets you interact with
the element, that element is said to have focus; when you click
somewhere else, that element is said to blur.)

At the time of this writing, Internet Explorer 3.0 doesn’t support
window.blur().

Syntax:

frameReference.blur()
passwordName.blur()
selectName.blur()
textName.blur()
textareaName.blur()
windowReference.blur()

Example:

parent.myFrame.blur()
document.myForm.myPassword.blur()
document.myForm.mySelectField.blur()
document.myForm.myTextField.blur()
document.myForm.myTextareaField.blur()
mySecondWindow.blur()

bold

Using the bo1d () method of the String object enables you to
display a string in bold font.

Syntax:
string.bold()

Example:
document.write("IMPORTANT".bold())

Using the bo1d () method produces the same result as surround-
ing text with the . . . HTML tag pair.

ceil
For math geniuses, use the ceil() (for ceiling) method of the

Math object to return the smallest integer that is greater than or
equal to a specified number.

Syntax:
Math.ceil(number)

Example:

document.write("The ceil of 36.25 is " +
Math.ceil(36.25))

|

-

| ¥

—

?
_

T

i

&

click

charAt

Use the charAt () method of the String object to return one
single character of a string given a specified index.

Syntax:
string.charAt(index)

Example:

// thirdLetter will get the value 't'
var thirdLetter = "Netscape".charAt(2)

clearTimeout

Use the clearTimeout () method of the frame or window
objects to clear a timeout that was set by using the corresponding
setTimeout () method. See also “setTimeout” later in this part
for specifics.

Syntax:
clearTimeout(timeoutlID)

Example:

readyYetTimer = setTimeout("alert('5 seconds have
elapsed. Are you ready yet?!')", "5000")

éiéarTimeout(readeetTimer)

click

Use the c1ick() method of the button, checkbox, radio,
reset, and submit objects to simulate a mouse click program-
matically (in other words, calling the c11ick () method has the same
effect as a user clicking on a button with the mouse). Clicking on a
radio button selects the radio button (that is, sets the radio button’s
checked property to true). Clicking on a check box checks the
check box (sets the check box’s checked property to true).

Syntax:

buttonName.click()
checkboxName.click()
radioNamel[index].c1ick(
resetButtonName.click()
submitButtonName.c1ick(

)
)

Example:

document.myForm.myButton.click()
document.myForm.myCheckbox.click()

(continued)

(continued)

document.myForm.myRadioGroup[0]
document.myForm.myReset.click()
document.myForm.mySubmit.click(

.click()
)

close (document)

Use the c1ose() method of the document object to close an
output stream that was opened with the document.open()
method and to force any data already sent to the document to be
displayed. See also the “open (document)” and “open (window)”
sections later in this part.

Syntax:
document.close()

Example:

myMessageWindow=window.open('', 'messageWindow")

myMessageWindow.document.writeln('This is a message
window, all right!")

myMessageWindow.document.close()

close (window)

Use the c1ose () method of the window object to close a window
that was opened with the open () method of the window object.

As you'd expect, if you leave off a specific reference to a window,
the interpreter assumes that you want to close the current
window — with one exception. In an event handler, you must
specify window.close() if you want to close the current window.
(If you leave off the specific reference to a window, the current
document closes. Go figure.)

Syntax:
windowReference.close()

Example:
close() // closes the current window

// closes the current window from inside an event
handler
window.close

// closes the window called myMessageWindow
myMessageWindow.close()

confirm
Use the confirm() method of the window object to display a
pop-up dialog box on a Web page. The dialog box that appears

-

s P

o

w W W W W w
[- ! »

-
e

f" 1N

&

et

conta?ns a message, an OK button, and a Cancel button. The
confirm() method returns true if the user clicks on the OK
button and false if the user clicks on the Cancel button.

Syntax:
confirm("message")

Example:

var submitOk = confirm("Do you really want to
submit the form?")

The preceding code example causes a confirmation box to pop
up and ask the user, “Do you really want to submit the form?” If
the user clicks on the OK button, submit0k is set to true; but if
the user clicks on the Cancel button, submitOk is set to false.

cos

Use the cos () method of the Math object to return the cosine of a
number.

Syntax:
Math.cos(number)

Example:
Math.cos(0)

exp

Use the exp () method of the Math object to return e, where e
is Euler’s constant and number is the number argument provided
to exp().

Syntax:
Math.exp(number)

Example:
Math.exp(1)

fived

Using the fixed() method of the String object enables you to
display a string in fixed-pitch font. (Fixed-pitch font looks sort of
like the font from an old typewriter.)

Syntax:
string.fixed()

hild

pr& "”I@,

floor

Example:
document.write("E = MC2".fixed())

Using the fixed () method produces the same result as surround-
ing text with the <TT>...</TT> HTML tag pair.

floor

Use the f1oor () method of the Math object to return the biggest
integer that is less than or equal to a specified number.

Syntax:
Math.floor{number)

Example:
var result = Math.floor(88.78)

focus

Use the focus () method of the frame, password, select, text,
textarea, or window objects to give them focus.

The focus () method is handy for helping users navigate through
your form. For example, if you attempt to validate an input value
and determine that the value is incorrect, you can set focus bac.k
to the input field so that the user can retype the value without first
having to tab backward to it.

At the time of this writing, Internet Explorer 3.0 doesn’t support
window.focus ().

Syntax:

frameReference.focus()
passwordName.focus()
selectName.focus()
textName.focus()
textareaName.focus()
windowReference.focus()

Example:

self.framel.focus()
document.myForm.myPassword.focus()
document.myForm.mySelectField.focus()
document.myForm.myTextField.focus()
document.myForm.myTextareaField.focus()
mySecondWindow. focus()

w_w W W W w

-

forward

Bl

hild

e

fontcolor

Using the fontcoTor () method of the String object enables you
to display a string in any conceivable color. See also Appendix B
for a complete list of predefined colors; see also “Adding Multi-
media to Your Web Page” in Part IX for instructions on creating
your own colors.

Syntax:
string.fontcolor(color)

Example:

// using a predefined color string
document.write("This is brown".fontcolor("brown"))

// using hexadecimal RGB triplet notation
document.write("This is
fuchsia".fontcolor("FFOOFF"))

Using the fontcolor () method produces the same result as
surrounding text with the ...
HTML tag pair. Both the fontcolor method and the
{FONT>... tag pair override the default text color
defined with the TEXT attribute of the <BODY>. . .</BODY>

tag pair.

fontsize

Using the fontsize() method of the String object enables you
to display a string in one of seven font sizes (where size must be
an integer between 1 and 7).

Syntax:

string.fontsize(size)

Example:

var smallSize=1
document.write("This is large".fontsize(7))
document.write("This is small".fontsize(smallSize))

Using the fontsize() method produces the same result as
surrounding text with the <FONTSIZE=7>...</FONTSIZE> HTML
tag pair.

forward

Use the forward() method of the history object to load the
next URL in the history list.

getDate

j])

Syntax:
history.forward()

Example:
history.forward() // What could be easier?

Invoking the forward() method produces the same result as
using history.go(1) (or choosing Go=>Forward from the
Navigator or Internet Explorer menu).

getDate

Use the getDate() method of a Date object to access the day of
the month associated with a specified date. For example, if the
Date object represents the 26th of June, 1996, getDate() returns
the value 26.

Syntax:
dateObjectName.getDate()

Example:

var today = new Date() // gets the current date
var dayOfMonth = today.getDate()

getDay

Use the getDay () method of a Date object to access the day of
the week associated with a specified date (Monday being 1; '
Tuesday being 2; and so on, with Sunday being 7). For example, if
the Date object represents Wednesday, the 26th of June, 1996,
getDay () returns the value 3.

B —

Syntax:
dateObjectName.getDay ()

Example:

var today = new Date() // gets the current date
var dayOfWeek = today.getDay()

getHours

Use the getHours () method of a Date object to access the hour
(in 24-hour military time) associated with a specified date. For
example, if the Date object represents Wednesday, the 26th of
June, 1996, at 3:45 p.m., getHours () returns the value I5.

Syntax:

/

dateObjeé%Name.getHours()

getSeconds

ud

1

o

e

Example:

var today = new Date() // gets today's date
var hour = today.getHours()

getMinutes

Use the getMinutes () method of a Date object to access the
minutes associated with a specified date. For example, if the Date
object represents Wednesday, the 26th of June, 1996, at 3:45 p.m.,
getMinutes () returns the value 45.

Syntax:
dateObjectName.getMinutes()

Example:

var today =.new Date() // gets today's date
var numberMinutesAfterTheHour = today.getMinutes()

getMonth

Use the getMonth () method of a Date object to access the
month of the year associated with a specified date. For example, if
the Date object represents Wednesday, the 26th of June, 1996, at
3:45 p.m., getMonth () returns the value 5.

For a date of June, you’d think getMonth () would return 6,
wouldn’t you? Well, unfortunately, it returns 5. That’s because

JavaScript counts January as month 0, February as month 1, and
SO on.

Syntax:
dateObjectName.getMonth()

Example:

var today = new Date() // gets today's date
var month = today.getMonth()

getSeconds

Use the getSeconds () method of a Date object to access the
number of seconds in the specified date. For example, if the Date
object represents Wednesday, the 26th of June, 1996, at 3:45:16
p.m., getSeconds () returns the value 6.

Syntax:
dateObjectName.getSeconds ()

{‘gﬁNle/

getTime

Example:

var today = new Date() // gets the current date
var seconds = today.getSeconds()

getlime

Use the getTime () method of a Date object to access the
number of milliseconds that have elapsed since January 1, 1970, at
00:00:00 (no, I'm not kidding!). About the only use that regular
folks are going to have for this method is to assign one time to
another, like this: timeTolLeave = today.getTime() (That way

_you never have to actually look at and decipher the darn thing.)

Versions of Navigator earlier than 3.0 (and some early beta
versions of Internet Explorer Version 3.0) tend to — well — blow
up if they encounter a date earlier than January 1, 1970. So avoid
giving these browsers a date like this! If you're running anything
other than Navigator 3.0 and want to work with dates older than
1970, try using a more recent date (say, 1980) and then doing
subtraction by using regular variables (as opposed to Date
objects). See also the “Date” section in Part IV.

Syntax:
dateObjectName.getTime()

Example:

var startDay = new Date() // gets the current date
var startTime = today.getTime()

getTimezoneOffset

Use the getTimezoneOffset () method of the Date object to
get the difference in minutes between the time of the Date object
and Greenwich Mean Time (GMT).

Syntax:
dateObjectName.getTimezoneOffset()

Example:

today = new Date() // gets the current date
currentTimezoneOffsetInHours =
today.getTimezoneOffset()/60

getVear

Use the getYear () method of a Date object to access the year of
the specified date (less 1900). For example, if the Date object
represents Wednesday, the 26th of June, 1996, at 3:45:16 p.m.,
getYear () returns the value 96.

- —
1=

- w
Iy

llvllllvli

[
)

. -
1 1

-

v

indexOf |

Syntax:
dateObjectName.getYear()

Example:

var today = new Date() // gets the current date
var currentYear = today.getYear()

qo
Use the go() method of the history object to load a URL from

the history list. You can supply go () with one of the following two
parameters:

+ An integer, which the interpreter uses to count forward
(positive integer) or backward (negative integer) from the
current list position to find a URL to load

f A string that contains a whole URL or just part of a URL; the
interpreter finds the nearest matching URL and loads it

Syntax:
history.go(delta | "lTocation")

Example:

history.go(3) // Toads the third URL forward
history.go(-2) // loads the second URL back

// Toads the closest URL containing the parameter
. String
history.go("www.austin")

indexOf

Use the index0f () method of the String object to search a

specified string for the occurrence of another specified string. The
index0f() method accepts two parameters:

4+ A search value that consists of a string for which to search

+ An optional index value that tells the interpreter where in the
original string to begin searching for the search string (the
default value is 0, which means that the search begins —
where else? — at the beginning)

index0f () returns the first index of the original string that

matches the search string (see the following real-life example). If it
can’t find a match at all, it returns —1.

Syntax:

string.index0f(searchValue, [fromindex])

TP

«x;\nme/

Example:
var theResult = "Can you can-can?".index0f("can")
// theResult is set to 8

C an ¢ an -

0 1234567891011

The string “Can you can-can?” is nothing more than an indexed list
of characters. As shown in this example, the first occurrence of
“can” starts at index 8 — so theResult is set equal to 8.

y ou

italics

Using the italics() method of the String object enables you to
display an italicized string.

Syntax:

string.italics()

Example:
"IMPORTANT".italics()

Using the italics() method produces the same re§ult as
surrounding text with the <I>...</I> HTML tag pair.

javaEnabled ()

The javaEnabled() method of the navigator object }'eturns
true or false, depending on whether Java is enabled or disabled.

Syntax:
navigator.javaknabled()

Example:

i igator.javatnabled()) {)

i (g?él%("davg is enabled in this Navigator ses-
sion.™)

}

At the time of this writing, only Navigator 3.0 supports the
javaEnabled() method.

Jjomn

The join() method of the array object joins thg elements of an
array into one long string. join() accepts an optlopal se.p’arator
argument. If an optional separator argumen‘t is provided, it’s)
placed between the elements inside the string. If no separator is
provided, a comma is used to join the elements.

W W W W W W !

[

- -

- W W

P

link

Tlp

’sﬂwl‘,/

Syntax:
string = arrayName.join([separator])
Example:

var animalArray = new Array("cat", "dog", "bat",
"bear")

var aString = animalArray.join(" and ")

// i?tring is assigned "cat and dog and bat and
ear"

lastindexOf

The 1astIndex0f () method is practically a mirror image of the
index0f () method. TastIndexOf () starts searching from the
end of the original string; index0f () starts searching from the
beginning of the original string.

Use the TastIndex0f () method of the String object to search a
specified string backwards for the occurrence of another specified
string. The TastIndex0f () method accepts two parameters:

4+ A search value that consists of a string for which to search

4+ An optional index value that tells the interpreter where in the
original string to begin searching for the search string (the
default value is length of the string minus one, which means
that the interpreter begins searching at the end of the string)

The TastIndexOf () method returns the last index of the original

string that matches the search string. If it can’t find a match at all,
it returns —1.

Syntax:

string.lastIndexQf(searchValue, [fromIndex])

Example:

var(theRe%u1t = "Can you can-can?".lastIndex0Of
llcanll
// theResult is set to 12

link

Use the 11nk() method of the String object to create an HTML
hypertext link inside a JavaScript script. Remember to use the
write() orwriteln() methods of the document object to
display the link. (It doesn’t do much good to define a link on-the-
fly if no one can see it to click on it, now does it?)

log

| -

J

Syntax:
TinkText.link(hrefAttribute)

Example:

document.write("My Cool Web Page".link("http://
www.fictitious.com/me/my.html"))

log

Use the 109 () method of the Math object to return the natural
logarithm (base €) of a number.

Syntax:
Math.log(number)

Example:
Math.log(10)

max

Use the max () method of the Math object to return the greater of
two numbers.

Syntax:
Math.max(numberl, number?)

Example:

var taxedAmount = Math.max(amount.calcOneWay(),
amount.calcAnotherWay()) // pay taxes on
greatest amount

min
Use the min () method of the Math object to return the lesser of
two numbers.

Syntax:
Math.min(numberl, number?)

Example:)
var youngest = Math.min(myAge, georgesAge)

open (document)

Use the open () method of the document object to open a
document for writing via the write () and writeln() methods.
(Well, technically you're opening something called an output

open (window)

|

l o e i

o

i

}

o

stream, but you can think of the stream as the document.) When
you use the open () method, be sure to use the corresponding
close() method as well. See also the “close (document)”
section earlier in this part.

The open() method accepts one optional parameter, mimeType.
mimeType (which refers to MIME type, or Multipurpose Internet
Mail Extension) is a string that specifies the format of the data that
you plan to stick into the document. Most of the time, you don't
have to specify a value for this parameter; it defaults to plain old
HTML, which is probably what you want. Just in case, though, the
following table shows your choices:

MIME type What It Is

text/html HTML statements (this is the default)
text/plain Plain old ASCII text with end-of-line characters
image/gif An image in .GIF format

image/jpeg An image in .JPG format
image/x-bitmap Animage in bitmap format

plugln A Netscape plug-in

Syntax:

document.open(["mimeType"])

Example:

document.open()
document.open("image/gif™)
open (window)

Use the open() method of the window object to open a new Web
browser window.

Syntax:

[windowVar = 1 [window].open("URL", "windowName" [,
"windowFeatures"])

Example:

secondWindow = open("", "statusWindow",

"scrollbars=yes,width=200,height=200")

For the last optional value shown in the syntax sample
(windowFeatures), you have your choice of any or all of follow-
ing features. Just make sure that you surround the entire list that
you create with quotes and separate each attribute-value pair with

parse

-

replace

a comma (no spaces), as shown in the example. (The items
bounded by square brackets are optional, and the pipe symbol
means or.)

random

Use the random() method of the Math object to return a random
number between 0 and 1.

too]bar[=yes[no]5[=1*0], .
Sratotetts e disi i o Symtaz:
status[=yes|no]5%=11$], | Math.random()
rennn e el -
scrollbars{=yes|nol|[l= , ;
resizab]e[=yes|no]|%=1|$],] var aRandomNumber = Math.random()
width=pixels, i
height=pixels oy { ¢(
reloa
parse [The reload () method of the 1ocation object forces a reload of
Use the parse() method of a Date object to turn a string into a Lo the document specified by the URL in the href property of the

lTocation object. The result of the reload () method is the same
as clicking on the Reload button in Navigator (or the Refresh
button in Internet Explorer).

date.

Syntax: [
myj

Date.parse(dateString) Syntax:
Example: - windowReference.location.reload()
|
myBirthday.setTime(Date.parse("Jul 26, 1996")) E J Example:
_<INPUT TYPE="button" NAME="reloadButton"

pow - ¥ VALUE="ReToad Now"

. g ;l onClick="self.location.reload()">
Use the pow() method of the Math object to return a specified iy !

AN
AP,

base to the specified exponent power. At the time of this writing, only Navigator 3.0 supports the

reload() method.

Syntax: ‘ ?

Math.pow(base, exponent)) replace

Example: ‘ The replace() method of the 1ocation object replaces the
. " fe m # current history entry with the specified URL.

document.write("7 to the power of 8 is " + EL

Math.pow(7,8)) The upshot is that after JavaScript calls the replace() method

the new URL loads, and the user can no longer navigate to the
previously loaded URL by clicking on the Back button.

L]

|

prompt ‘B
Use the prompt () method of the window object to display a -
pop-up dialog box that contains a message that you define, an
input field, an OK button, and a Cancel button. The optional E
parameter inputDefault pre-fills the input field with the default A
value that you specify.

Syntax:

windowReference.location.replace("URL")

A

Example:

self.location.replace("http://home.netscape.com")
Syntax:

~“MHMI‘,/

At the time of this writing, only Navigator 3.0 supports the
replace() method.

R —

prompt("message" [, TnputDefault])

Example:
prompt("What size t-shirt do you want?", "Large")

! i

TP

RN
WA,

reset

reset

The reset () method of the form object simulates a user clicking
on a Reset button; that is, it causes all a form’s elements to be
reset to their default values.

Using the reset () method can make entering multiple copies of
your form easier for users. When users finish filling out your form
and submit it, you can call the reset () method to reset the form
so they can fill it out again from scratch.

Syntax:
document. formName.reset ()

Example:

if (resetOkay) {
document.myForm.reset()
}

At the time of this writing, only Navigator 3.0 supports the
reset () method.

reverse

The reverse () method of the array object transposes the
elements of an array; that is, the order of the elements is reversed
(the first element becomes the last and the last element becomes
the first).

Syntax:
arrayName.reverse()

Example:

var 1istOfJobs = new Array("bookie", "writer",
"nurse")

1ist0fJobs.reverse()]

// Now the array is in this order:
bookie

nurse, writer,

round

The round () method of the Math object returns the value of a
specified number, rounded to the nearest integer.

Syntax:

Math.round(number)

Example:
var closeEnough = Math.round(totalPrice)

b T 3 i % " o
‘ -

L
P

.

. .

| =

—_— e e

§

I

—

setDate

*‘p.nm‘,/

seroll

The scrol1() method of the window object lets you scroll a
window to the coordinates you specify. scrol1() accepts two
arguments: an x-coordinate and a y-coordinate. Both values must
be integers representing the number of pixels to scroll in each
direction (the x-coordinate is left-to-right, and the y-coordinate is
up-and-down).

This method only executes if the page the method is on contains
enough displayed data to be scrollable. Put another way, unless
the page is so long that scroll bars are seen, calling scro11()
won’t have a visible effect.

Syntax:

windowReference.scroll(x-coordinate, y-coordinate)

Example:

if(okayToScroll) {
} self.scrol1(50, 100)

At the time of this writing, only Navigator 3.0 s'upports the
scrol1() method.

select

Use the select () method of the password, text, or textarea
objects to select (highlight) their respective input areas.

Syntax:

passwordName.select()
textName.select()
textareaName.select()

Example:

onBlur="document.myForm.myPasssword.select()"
onClick="document.myForm.myTextField.select()"
if (goBack()) {

| document.myForm.myTextareaField.select()

setDate

Use the setDate () method of the Date object to set the day of
the month for a specified date. The required dayValue parameter
can be any integer from 1 to 31.

Syntax:

* dateObjectName.setDate(dayValue)

setHours

Example:
myBirthday.setDate(26)

setHours

The setHours () method of the Date object enables you to set
the hours for a specified date. The required hoursValue param-
eter can be any integer between 0 and 24.-(For any value over 24,
the interpreter adds the excess onto the days portion of the date.)

Syntax:
dateObjectName.setHours(hoursValue)

Example:
contractbDate.setHours(12)

setMinutes

The setMinutes() method of the Date object enables you to set
the minutes for a specified date. The required minutesValue
parameter can be any integer between 0 and 60. (For any value
over 60, the interpreter adds the excess onto the hours portion of
the date.)

Syntax:

dateObjectName.setMinutes(minutesValue)

Example:
averageHeeHawEpisode.setMinutes(30)

setMonth

The setMonth () method of the Date object enables you to set
the month for a specified date. The required monthValue param-
eter can be any integer between 0 and 11, where 0 corresponds to
January and 11 corresponds to December. (For any value over 11,
the interpreter adds the excess onto the years portion of the
date.)

Syntax:
dateObjectName.setMonth(monthValue)

Example:
christmas.setMonth(11)

[

"

setTimeout

setSeconds

The setSeconds () method of the Date object enables you to set
the seconds for a specified date. The required secondsValue
parameter can be any integer between 0 and 59. (For any value
over 59, the interpreter adds the excess onto the minutes portion
of the date.)

Syntax:
dateObjectName.setSeconds(secondsValue)

Example:
pickyDate.setSeconds(12)

setTime

The setTime() method of the Date object enables you to set the
date and time for a specified date. The required timeValue
parameter reflects the number of milliseconds since January 1,
1970 00:00:00. (The fact that no normal human could come up with
such a parameter should give you a tip-off that this method is
mainly used to assign one date to another, like this:
oneDate.setTime(anotherDate.getTime().)

Syntax:
dateObjectName.setTime(timeValue)

Example:

husbandAnniversary.setTime(wifeAnniversary.getTime())

setTimeout

Use the setTimeout () method of the frame or window objects
to evaluate an expression after a specified length of time elapses.
Using the setTimeout () method is just like setting a timer and
then doing something when the timer goes off. (An obvious
application for this method is a Web game: You can start the clock
ticking when a user begins the game and then pop up a message
saying Game Over if the user hasn’t completed the game in a
certain amount of time.)

This method takes the following two parameters:
4 An expression to evaluate

4 A number that represents the number of milliseconds to wait
before evaluating the expression

setVear

-

Saving the return value from the setTimeout () methodina
variable is a really good idea because you need to use this variable
if you ever want to cancel the timer. To cancel a timer, you need to
pass the variable you saved to the clearTimeout () method of
the frame or window object (see the example of clearTimeout()
in the following example for clarification).

Syntax:)
timeoutID=setTimeout(expression, number)

Example:

readyYetTimer=setTimeout("alert('5 seconds have
elapsed. Are you ready yet?!')", "5000")

éiéarTimeout(readeetTimer)

setVear

The setYear() method of the Date object enables you set the
year for a specified date. The required yearValue parameter
must reflect a year between 1970 and 1999. (And because the
range is so narrow, you don’t have to specify the 20th century; for
example, 1985 and 85 are both perfectly acceptable entries.)

Passing a bogus (out-of-range) value for the yearValue parameter
shown in the following example may not cause an immediately
obvious error. Because the interpreter assumes that every date
falls in the 1900s, any value not between 70 (1970) and 99 (1999)
has the effect of setting the date to the last day of 1969. No

fireworks, no pop-up warnings — just really goofy date calculations.

Syntax:
dateObjectName.setYear(yearValue)

Example:
nephewGraduation.setYear(98)

sin
Use the sin() method of the Math object to return the sine of a
number (not the number of sins committed!).

Syntax:
Math.sin(number)

Example:

document.write("Here is the sine of PI: " +
Math.sin(Math.PI))

il

!

small

Using the smal1() method of the String object enables you
display a string in small font (“small” equates to font size 2). See
also the fontsize() method described earlier in this part.

Syntax:
string.small()

Example:
"This is gonna be really teensy.".small()

Using the smal1 () method of the String object produces the
same result as surrounding text with the <SMALL>...</SMALL>
HTML tag pair.

sort

Use the sort () method of the array object to sort the elements
in an array. The sort () method accepts an optional argument
that specifies a function name to use for the sorting algorithm. If a
function name isn’t supplied, sort () converts the elements in the
array to strings (if they’re not already strings) and compares them
in lexicographic, or alphabetic, order.

The default sorting algorithm may be sufficient for your needs —
unless your array elements contain numbers. But look what
happens if your array does contain numeric values: 60, 9, and 100
will be sorted like this — “100”, “60”, “9” — which is probably not
what you expected. The following example contains code for a
numeric sorting algorithm that, when passed to the sort ()
method, causes numbers to sort correctly.

Syntax:

arrayName.sort([compareFunction])

Example:

// this sort works just fine for string elements
anArray.sort()

// This function returns the lesser of two values.
// JavaScript automatically calls this function
// as many times as necessary, comparing two
// values at a time, until the entire array
// of elements is sorted.
function compareNumbers(a, b) {
return a - b
}

éﬁArrayOfNumbers.sort(compareNumbers),

RN,
B ‘./

TiP

split

split

Use the sp11it() method of the String object to split a string
into an array of smaller strings. sp1it() accepts an optional .
separator which, if provided, is used to determine where the string
is divided. If no separator is provided, the resulting array consists
of one element containing the entire original string.

Syntax: ‘
string.split([separatorl)

Example:

arrayOfWords = "There once was a man from
Nantucket".split(" ")

Internet Explorer 3.0 does not support the sp1it() method at the
time of this writing.

sqrt
Use the sqrt () method of the Math object to return the square

root of a number. If the number parameter is negative, the return
value is always 0. (Some math rule or something.)

Syntax:
Math.sqrt(number)

Example:

document.write(The square root of 36 is " +
Math.sqrt(36))

strike

Using the strike() method of the String object enables you to
display a string with strikeovers so the text looks like it's been
crossed out.

Syntax:
string.strike()

Example:
“Was $49.99".strike()

Using the strike() method produces the same result as
surrounding text with the <STRIKE>...</STRIKE> HTML

tag pair.

El

i

]

! [—

substring

sub

Use the sub() method of the String object to display text as
subscript. Using this method yields the same result as surrounding
text with the HTML tag pair _{...}.

Syntax:
string.sub()

Example:

document.write("H" + "2".sub() + "0 = water")

submit

Use the submit () method of the form object to submit a form
(that is, to send it for processing to the server program specified
in the ACTION attribute, which is defined as part of the
<FORM>...</FORM> tag pair).

Syntax:
formName.submit ()
Example:

document.myForm.submit()

substring

Use the substring() method of the String object to return a
substring (or portion) of a specified string.

Remember that the first character of a string has index 0, not 1;
so when you supply an index range of (2, 4), you're actually
asking for the third and fourth characters of the string to be
returned to you. Why not the third through the fifth characters?
Because substring() stops one character before the second
index you give it.

Syntax:

string.substring(indexA, indexB)

Example:

The following example displays the string “Woman”:
document.write("Wonder Woman".substring(7, 12))
Wonder Woman
0123456178 91011

sup

Hey, so it's not very intuitive until you see the indexed string all
laid out, — but it works! If you do a great deal of text manipulation,
you can get the hang of it in no time.

sup

Use the sup () method of the String object to display text as
superscript. Using this method yields the same result as surround-
ing text with the HTML tag pair ^{...}.

Syntax:
string.sup()

Example:

document.write("Scooter's Better-Than-Homemade
Cinnamon Rolls" + "TM".sup())

tan

Use the tan() method of the Math object to return the tangent of
a number.

Syntax:
Math.tan(number)

Example:
var myTangent = Math.tan(1l)

toGMTString

Use the toGMTString() method of the Date object to convert a
date to a string. This method uses the Internet GMT conventions
(which means that the time is returned in Greenwich Mean Time),
and the format of the result that returns is slightly platform-
dependent. Under Windows 95, for example, you get a string
similar to the following:

Thu, 27 Jun 1996 16:51:24 GMT

Syntax:
dateObjectName.toGMTString()

Example:

var today = new Date() // gets today's date
var myDateString = today.toGMTString()

T
bd b b

1

C g L

L
3

toString

RN/
W,

TiP

toLocaleString

Use the toLocaleString() method of the Date object to
convert a date to a string that is based on local time. This
method returns the correct local time, but the result is platform-
dependent. On Windows 95, you get a string similar to the
following:

06/27/96 10:51:24

Syntax:
dateQbjectName.tolLocaleString()

Example:

var today = new Date() // gets today's date
var myDateString = today.tolLocaleString()

Every time that you hear the words platform dependent, your skin
should begin to crawl and your limbs should start to twitch
uncontrollably. Platform dependence is to be avoided whenever
possible because it means that you either have to redo work
(yuck!) or limit your audience to people running the same plat-
form as you (double .yuck!).

Sometimes you have no way around platform dependence; but, for
dates, you can try to use the getMonth(), getYear(), and other
such methods before you resort to the toGMTString() and
tolLocaleString() methods.

toLowerCase

Use the toLowerCase() method of the string object to convert
a specified string to lowercase.

Syntax:
string.tolowerCase()

Example:

document . .write("DON\'T SHOUT, I CAN HEAR YQU JUST
FINE".toLowerCase())

toString

Every JavaScript object supports the toString() method. Use
this method to represent any object as a string. If the object

- doesn’t have a string value, toString()returns a string contain-

ing the type of the object. For example, window.toString()
returns the string "[object Window]".

toUpperCase

Syntax:
object.toString()

Example:

document.write(document.lastModified.toString())
document.write(myFunction.toString()) :
document.write(myAge.toString())
document.write(Array.toString())

tolpperCase

Use the toUpperCase () method of the String object to convert
a specified string to all uppercase.

Syntax:

string.toUpperCase()

Example:

document.write("could you please speak
up?".tolUpperCase())

urc

Use the UTC () method of the Date object to return the number of
milliseconds between a specified date and January 1, 1970,
00:00:00. (UTC stands for Universal Coordinated Time, and it’s)
basically the same thing as GMT.) Remember that, because this is
GMT, any difference between your local time and GMT is reflected
in the return value. For example, if 6 hours are between your local
time and GMT and you put in a value of hours as 0, the return
value has hours set to 6. :

Syntax:

Date.UTC(year, month, day [, hours] [, minutes] [,
seconds])

Exampie:

GMTDate = new Date(Date.UTC(96, 7, 24, 0, 0, 0))

write

Use the write() method of the document object to write expres-
sions to the specified document.

ﬂ

-
n!

L !ll'l o W

o

» W W

writeln

hild

You can use the write() method not only within the
<SCRIPT>...</SCRIPT> tags, but within event handlers,

as well. For example, this statement is perfectly legal:
onClick="anotherWindow.document.write('You clicked
iti)n.

Of course, you can’t write to the current document in the current
window in an event handler because the document has already
been displayed.

Syntax:

write(expressionl [, expression?] ... [,
expressionh])

Example:

document.write("Here is the monthly sales total: " +

monthlyTotal)

writeln

Use the writeln() method of the document object to write any
number of expressions to the specified document. Although
writeln() appends a newline character (the HTML equivalent of
a carriage return) to the end of the displayed expressions, unless
you use the newline character within an HTML tag pair that cares
(like <PRE>. . .</PRE>, which preformats text), the display is
identical to that of write().

Syntax:

writeln(expressionl [, expression2] ... [,
expressionN])

Example:

document.writeln("<PRE>")

document.writeIn("moogoo")
document.writeln("gaipan")
document.writeln("</PRE>")

JavaScript For Dummies Quick Reference

e

i -

Properties (Object Data)

-l

. If you're familiar with object-oriented concepts, you
know that every object, by definition, is made up of
L two things:

4+ Data (implemented as properties)

4 Behavior (implemented as methods)

Part VI is devoted to methods, which represent the
7 behaviors associated with an object; this part de-
scribes properties — the items that represent an
object’s data.

In this part . . .

v~ Accessing object properties

¥ Modifying object properties

b ¥ Relating object properties to their corresponding
HTML tag attributes

S
|
i

(-
]

- W W W W W W W W
g i

-
a |

-
|

i

-
!

i

About Properties arguments

About Properties appCodeName

In object-oriented terms, properties are values that describe objects. - Use the appCodeName property of the navigator object to
For instance, a dog object might have the following properties: access the code name of the version of Navigator curr]ently in use
color, weight, whether or not it’s pedigreed, and so on. This property is a read-only property — you can’t change it. .

navigator.appCodeName

-
e

You, the JavaScript author, set many of the properties that you see
in this section when you define your objects in HTML. Unfortu-
nately, the names of properties aren’t always identical to the
names of the attributes you set them to. For example, you may
define ALINK="cornflowerblue" in your <BODY>...</BODY>
tag, but you retrieve the value this way: document.alinkColor.

-
i J

applets

L

\ The applets array of the document object contains entries for
— each of the applets currently loaded in a page.

document.applets[0]
document.applets.length

Three properties — name, value, and 1ength — are presented a
little differently than the other properties. Just about every object
contains these three properties, and their values are very similar:
form.name refers to the form’s name, document . name refers to
the document’s name, textarea.value refers to a textarea
object’s value, and so on. So, 1 list these properties with no qualifiers
(for instance, just plain value instead of document. form.
textarea.value). Under their headings, you find a list of all the
objects that support these properties and other useful stuff, like
which HTML tag attribute an object property corresponds to.

L

appName

Use the appName property of the navigator object to access the
name of the browser currently in use. You can’t change the value
for this property.

| -

navigator.appName

action

W W W
L

| -

Use the action property of the form object to access the value of app (/8]’5[0"

the HTML ACTION attribute. This value represents the URL .

(usually a CGI program or amailto: URL) that the form is sent to Use the appVersion property of the navi j

when ‘the user clicks the Submit button. You can change the value the version of the brovlzrseli') cul}',rentlyein 1\;;9 '[a‘ﬁi()srp(;gll)zcrtt;)isa;cess
for this property. read-only property.

-
L

J

document.myForm.action navigator.appVersion

PRI, The Microsoft Internet Explorer doesn’t support a value of
mailto: for the form’s ACTION attribute at the time of this

writing.

alinkColor

Use the alinkColor property of the document object to access
the value of the ALINK attribute. The value of ALINK represents the
color that link text turns when a user activates, or clicks on, the
link. Valid values for this property include hexadecimal RGB triplets
(such as "00FFFFFF") and predefined strings (such as "red"), as
shown in Appendix B. You can change the value for this property.

_ arguments

| The arguments array is a property of the function object. The
ele{nents of the arguments array correspond to all the arguments
defined for a particular function object.

myFunctionName.arguments[0]
myFunctionName.arguments.length
B ~“;‘lll\ll/y‘,/
2 At the time of this writing, Navigator 3.0 does not support the
function.arguments property.

- W W™
A |

.
|

document.alinkColor

bgCol defaultStatus |
gColor

bgColor

Use the bgColor property of the document object to access the
value of the BGCOLOR attribute defined within the <BODY>. ..
</BODY> tag pair. The value of bgColor represents the color of
the entire document background, which you can easily change.

- -
"
1 h

cookie

A cookie is a property of the document object. The value can be
any string value (except no white space, semicolons, or commas
are allowed). A JavaScript statement can change this property.

document.cookie

defaultChecked (checkbox)

Use the defaultChecked property of the checkbox object to see
whether a check box was initially defaulted to selected. The value
- for the defaultChecked property always returns either frue
(meaning that the defaultChecked property was initially
defaulted to on) or false (meaning that it wasn’t). You can change
the value of this property to override the default setting.

document.myForm.myCheckbox.defaultChecked

defaultChecked (radio)

Usethedefau]tCheckedpropeny(ﬁtheradioobkmttosee
whether a radio button was initially defaulted to selected. The
value for the defaultChecked property always returns either
true (meaning that the defaultChecked property was initially
defaulted to on) or false (meaning that it wasn’t). You can change
the value of this property to override the default setting.

document.myForm.myRadioButton[0].defaultChecked

,
]

document.bgColor

border

Use the border property of the image object to access or change
the size of an embedded image’s border (in pixels).

P

document.myImage.border

checked (checkbox)

Use the checked property of the checkbox object to see w_hether
your user has checked a check box (clicked it on) or not (.chcked it
off). The value for the checked property always returns either true
(for checked) or false (meaning unchecked). You can change the
value of this property.

document.myForm.myCheckbox.checked

checked (radio)

Use the checked property of the radio object to see whet.her your f
user has set a radio button (clicked it on) or not (cliéked it off). de au , tSB Iected
The value for the checked property always returns either true (for

o
1

[T
] L]

i

. - Use the defaultSelected property of the option object to see
ty.
set) or false (not set). You can change the value of this property whether a selected option was selected by default (value is true)
document.myForm.myRadioButton[0].checked o - or not (value is false). You can change the value of this property.
B document.myForm.selectMusic.options[0].defaultSelected

complete

Use the complete property of the image object to find out
whether a user’s Web browser has completed its attempt to load
an image.

document.images[0].complete

defaultStatus

Use the defaultStatus property of the window object to access
= the default message that appears in a window’s status bar. You can
change the value for this property.

window.defaultStatus

»_- . .

defaultValue (password)

defaultValue (password)

Use the defaultValue value of the password object to see the
initially-defined default password value.

document .myForm.myPassword.defaultValue

defaultValue (text)

Use the defaultValue property of the text object to access the
value of the VALUE attribute of a text object. You can change the
value for this property.

document.myForm.myTextField.defaultValue

defaultValue (textarea)

Use the defaultValue property of the textarea objec’F to
access the contents of the textToDisplay textarea attribute. You
can change the value for this property.

document.myForm.myTextareaField.defaultValue

description

The description property is associated with both the .
mimeTypes object and the p1ugins object. When associated with
the mimeTypes object, the description property represents a
description of a MIME type. When associated with the p 1.ug1 ns
object, description represents a description of a plug-in.

navigator.mimeTypes[0].description
navigator.plugins[0].description

The F property of the Math object represents Euler’s math(;matical
constant and the base of natural logarithms This property is read-

only.
Math.E

elements

The elements array is associated with the form object — the
elements array enables you to access all the elements that have

LK
I T S

|

-
|

.
J

been defined for a form (button, checkbox, hidden, password,
radio, reset, select, submit, text, and texta rea). The array is
in source code order (the first element defined is the Oth element in
the array, and so forth). Elements in the array are read-only.

document.myForm.elements[0]
document.myForm.elements.length

embeds

The embeds array associated with the document object enables
you to access all the plug-ins loaded into your Web page. Each
element in the embeds array corresponds to an element defined
with the HTML tag <EMBED>.

document.embeds[0]
document.embeds.length

enabledPlugin

Use the enabledP1ugin property of the mimeTypes object to
access the plugins object that handles the corresponding MIME
type (see navigator.mimeTypes.type).

navigator.mimeTypes[0].enabledPTugin

encoding

Use the encoding property of the form object to access the
ENCTYPE form attribute. The value is one of the following two
strings: application/x-www-form-urlencoded, which is the
default value, or multipart/form-data. You can change the
value for this property.

document.myForm.encoding

fgColor

The fgColor property of the document object describes the
color of the text displayed in a document. The fgColor property
corresponds to the TEXT attribute defined as part of the
<BODY>...</BODY> tag pair. You can change the value for this
property, but values must be either hexadecimal RGB triplets or
predefined strings. See also Appendix B.

document.fgColor

filename

filename

Use the filename property of the plugins object to access the
name of the plug-in executable file on disk.

navigator.plugins[0].filename)
navi%ator.p]ugins["p]ug1nName 1.filename

forms

The forms array associated with the document object enables
you to access all the forms that have been defined for a dgcumgnt.
The forms array is in source code order (the first form defined is
the first element in the array ([0]), and so forth). Elements of the
forms array are read-only.

document.forms[0]

L
—

J

- e ww

height

The height property of the image object lets you access the
value of the HEIGHT attribute of the HTML tag. A valid
value for the height property can either be an integer (measured
in pixels), or a percentage (expressing a percent of total window
height). The value for this property is read-only.

document.myImage.height

The host property is associated with the a rea, 1ink, and
location objects. Use the host property of each object to access
the hostname:port portion of a URL. A valid value for the host
property must be a string representing a hostname and a port,
separated by a colon ().

document.forms.length A port, or more correctly, a port address, tells your browser exactly

what software process on a server the browser should talk to
when it loads a URL. In practice, ports are often predefined, so you
may never have occasion to worry about specifying a port name.

frames

frames array of the window object enables you to access all
Ili]eef rame object}; associated with a window. The fra rqe s array of
the window object contains an entry for each frame object defined
with the <FRAME)> tag inside a <FRAMESET> tag (such frame ’
objects are also called child frames), in the order they appear in
the source code. Elements of the frames array are read-only.

You can change the value for this property.

/1 syntax for 1ink object as well as area object
document.links[index].host

location.host

hostname

The hostname property is associated with the are a, 1ink, and
Tocation objects. The hostname property of each object refers
to the host and domain name of a network host. A valid value for
the hostname property is a string similar to the following:

Y

frames[0]
frames.length

J

hash

' i i i ink, and
The hash property is associated with the area, Tink,
Jocation objects. In all these objects, the hash propert){ refer-
ences one little piece of the overall href proper.ty belonging to .
each object. The href property contains an entire URL; the has

.
.|

austin.ibm.com. You can change the value for the hostname
property.

// syntax for link object as well as area object
document.Tinks[index].hostname '

i hor
roperty contains the piece of that URL that represents an anc
garr?e. (¥I‘he hash property is named hash becausg ar}’chor n"ames
are always preceded by a hash symbol (#), like this: "#T0C".)

mx_

- location.hostname

href

You can change the value for this property.

// syntax for link object as well as area object
document.links[index].hash

.‘_
d |

The href property is associated with the a rea, 1ink, and
- location objects. The href property of each object enables you
J to access a string that represents the entire URL for that object.

-

lTocation.hash

hspace

i\“mé’,

You can change the value for this property. An example of a valid
valueis http://software.ibm.com.

// syntax for Tink object as well as area object
document.links[index].href

location.href

' Be aware that the href property is comprised of several other

properties (hash, host, hostname, port, and search). That
means that if you change the values of any of these other properties,
you're also indirectly changing the value of href.

hspace

The hspace property of the image object enables you to access the
value of the HSPACE attribute of the HTML tag. This value
specifies a margin (measured in pixels) between the left and right
edges of an image and the surrounding screen real estate. The
hspace property only applies to images that have "left" or
“right" defined for the value of the ALIGN attribute of the

 tag.
document.myImage.hspace

images

index

The images array associated with the document object enables
you to access all the images loaded into your page. Each element
in the images array corresponds to an element defined with the

HTML tag .

document.images[0]
document.images.length

The index property of the option object enables you to access
the position of an option ina select object. Values for the index
property are integers, beginning with zero, and are read-only.

document.myForm.mySelectField.options[0].index

lastModified

Access the TastModified property of the document object to
determine when a document was last modified. The value for this
property is a string, and it’s read-only.

document.lastModified

-

=

d

¥

length

The 1ength property is used on several different objects and
arrays, and its value is always read-only.

Object Usage Value

array myArray.length Number of array elements

form document.myForm.length Number of elements for a
form

frame myFrame.length ; Number of child frames
within a frame

history history.length Number of entries in the

. history object
radio document.myForm.myRadio.length Number of radio buttons in

a radio object

select document.myForm.mySelect.length Number of options in a
select object

string document.myForm.myString.length Number of characters in a

. string
window Tength Number of frames within a
window
Array Usage Value
anchors document.anchors.length Number of anchors in a
document

elements document.myForm.elements.] ength Number of elements
defined for a form

embeds document.myForm.embeds.length Number of embedded
plug-ins
forms document.forms.length Number of forms defined in
a document
frames frames.length Number of frames in a
‘ frame/window
images document.images.length Number of images in a
: document
Tinks document.links.length Number of links in a
= - document
options ocument. . ions i
i options iengen Y SeTect: SeT o s 2

oioNEe, Surprise! Even though anchors is an array and its elements
are purportedly in source code order (that is, the Oth element

corre§ponds to the first anchor defined in a file, the first

linkColor

element to the second anchor defined, and so on), the value of
document.anchors[index] is always null (null is geekspeak
for “never existed”). What a sense of humor those JavaScript
architects had, huh?

linkColor

Use the 1inkColor property of the document object to access
the value of the LINK attribute. This value represents the color of
initially displayed link text. Valid values for this property include
hexadecimal RGB triplets (such as "00FFFFFF") and predefined
strings (such as "red"). You can change the values for this
property. See also Appendix B.

document.linkColor

links

The 11inks array of the document object enables you to access all
the links that have been defined for a document. The array is in
source code order (the first link defined is the Oth element in the
array, and so forth). Elements of the array are read-only.

document.1inks[0]
document.links.length

LN2

The LN2 property of the Math object represents the natural .
logarithm of the number 2 (approximately 0.693). This property is
read-only. (Unless you're a heavy-duty math person, my guess 1S
you'll never feel the urge to use LNZ in your JavaScript calcula-
tions — but please feel free!)

Math.LN2

LN10

The LN10 property of the Math object represents the natural
logarithm of 10 (approximately 2.302). This property is read-only.

Math.LN10

-

i -

[

-

y|

]

h—
)

L

o

i

&

&

~REF,
é@@%
< m

method

location

Use the Tocation property of the document object to access a
document’s complete URL. The value for this property is read-only.

document.location

LOG2E

The LOGZE property of the Math object represents the base 2
logarithm (approximately 1.442). This property is read-only.

Math.LOG2E

LOG10E

The LOGIOE property of the Math object represents the base 10
logarithm (approximately 0.434). Because the base 10 logarithm is
a mathematical constant, this property is read-only.

Math.LOG10E

lowsre

The Towsrc property of the image object reflects the value of the
LOWSRC attribute defined as part of the HTML < IMG> tag. A valid

value for this property is a URL for a low-resolution version of the
image to load.

document.myImage.lowsrc

method

The method property of the form object enables you to access
the value for the METHOD attribute defined as part of the
<FORM>...</FORM> tag pair. A valid value for this property is a
string that specifies how form field input is sent to the server
when the form is submitted (either "GET" or "POST™).

Take a look at Chapter 10 of JavaScript For Dummies (by Yours
Truly) for a complete discussion of the difference between setting
this property equal to "GET" and to "POST".

document.myForm.method

mimeTypes

J parent (window)

L4 Nothing particularly special applies to the implementation of radio

~ buttons. Any group of form objects to which you give the same
name is automatically organized in an array.

mimeTypes

The mimeTypes array associated with the navigator object‘
enables you to access all the MIME types supported by the client
(whether defined internally, by helper applicatiops, or by plug.-
ins). Each element in the mimeTypes array is amimeTypes object.

opener :

When you open a window using the open () method, you can use
the opener property of the window object to access the window
of the calling document.

navigator.mimeTypes[0]

name

N N
—_

| windowReference.opener
. . Q\M‘NWQ/
The name property is available on many different objects. Unless - 2 At the time of this writing, Internet Explorer 3.0 doesn’t support
otherwise noted, the name property always represents the NAME E” the window.opener property.
attribute for an object. - o
- options
Object Usage Comments B l P
applet document.appletsf0].name The options array, associated with the select object, enables
button document.myForm.myButton.name you to access all the options that have been defined for a select
= Checkbox.name , - object. The array is in source code order (the first option defined
checkbox document .myForm.my : . E is the Oth element in the array, and so forth). Elements of the array
fileUpltoad document.myForm.myFileUpload.name = are read-only.
frame myFrame.name document.myForm.selectFieldName.options[0]
hidden document.myForm.myHidden.name ! J document.myForm.selectFieldName.options.length
image document.myForm.myImage.name
password document.myForm.myPassword.name parent (frame)
plugin document.embeds[0].name ! J
: t.myForm.myRadio[0].name All radio The parent property of the frame object is a synonym for a
radio document..my Y buttons in a J frame whose frameset contains the current frame (the frame
set have the Rl you'’re in when you're referencing the parent property). When the
same name. l J parent is a frame, the value for the parent property is the value of -
reset document.myForm.myReset.name : the NAME attribute defined as part of the <FRAME> . . .</FRAME>
F Select.name] declaration. When the parent is a window, the value for the parent
select document.myForm.my i property is an internal reference. (That is, you can use the internal
submit document .myForm.mySubmit.name reference to refer to the properties of the window, but the internal
text document.myForm.myText.name reference is not much to look at.) The value for the parent
textarea document.myForm.myTextarea.name Y - property is read-only.
i i window. ' J parent
window window.name name is read-
only; its value
is that of the DV . '
s hat of the parent (window)
attribute. .
The parent property of the window object is a synonym for a
options document.myForm.mySelect. frame whose frameset contains the current window (the window
array options[0].name

you’re in when you’re referencing the parent property). When the

ol
B 3

| pathname

parent is a frame, the value for the pa rent property is the value of
the NAME attribute defined as part of the <FRAME> . . . </FRAME>
declaration. When the parent is a window, the value for the parent
property is an internal reference. (That is, you can use the internal
reference to refer to the properties of the window, but the internal
reference is not much to look at.) The value for the parent
property is read-only.

parent

pathname

Pl

The pathname property is associated with the area, 11ink, and
Jocation objects. Use the pathname property of each object tg
access the path portion of that object’s URL. You can set the string
value for the pathname property.

// syntax for both link object and area object
document.links[index].pathname

document.location.pathname

PI, a property of the Math object, refers to the mathem§tical
constant for the ratio of the circumference of a circle to its
diameter (approximately 3.1415). The value for PI is read-only.

Math.PI

plugins

port

The plugins array associated with the na vj gator object
enables you to access all the plug-ins (p1ugin objects) cur.rently
installed on the client. Each element in the plugins arrayis a
plugin object.

navigator.plugins[0]

The port property is associated with the area, 1ink, and
1ocation objects. The port property of each object is a
substring, or piece, of that object’s host property (which is 1ts§lf a
substring of that object’s href property). The port property is
the piece of the host after the colon.

|
i

d

e B

P : z i

prototype

TP

// syntax is for Tink object as well as area object
document.links[0].port

location.port

For a given href, if no value appears for port and the value of
protocolishttp://, the server assumes a default port value of
80, which is the default port for all Web-type communications.

protocol

The protocol property is associated with the area, 11nk, and
Tocation objects. Use the protocol property to access a
substring of the object’s URL, beginning with the first character
and ending with the first colon. (A common value for protocol is
http://.). You can change the protocol property’s value.

// syntax is for both 1ink and area objects
document.links[0].protocol

location.protoco]

prototype

The prototype property is available for any object that’s created
with the new operator, as shown in the following table. Use the

prototype property to add your own custom properties to whole
types of objects:

// custom property called "description" is defined
// for all date objects
Date.prototype.description = null

// a new date variable is created, called "today"
today = new Date()

// the new description property is assigned a value
today.description="Today is my birthday!"

Data Type Usage

Array Array.prototype.newPropertyName = null
Date Date.prototype.newPropertyName = null
Function Function.prototype.newPropertyName = null
Option Option.prototype.newPropertyName = null
String String.prototype.newPropertyName = null
Any user-defined object AnimaTl.prototype.newPropertyName = null

-

J!

referrer self (window)

d
ki

-
referrer selected

-
L

When a user loads a linked document, the referrer property of
that document holds the value for the URL of the calling docu-
ment. The value for referrer is read-only.

Use the selected property of the option object to access a
Boolean (true or false) value that describes whether an option in a
selection has been selected. You can change the value of the
selected property.

document.myForm.mySelectField.options[0].selected

-
e

document.referrer

search (link)

Used the search property of the 11ink object to access the
portion of the link URL that contains query information (that is,

v j

selectedIndex (options)

_ Use the selectedIndex property of the options array to access

form input fields sent to a CGI program to be used for a document-
based database search). A valid search value is a string that
begins with a question mark (?) followed by any number of
attribute-value pairs, each separated by an ampersand (&). You

the index of a selected option (an integer from 0 to however
many options exist). If multiple options have been selected, the
value of selectedIndex contains a reference only to the index of
the very first option selected. The value for
options.selectedIndex is the same as for

can change the value for search.

select.selectedIndex, and yo h.
document.Tinks[0].search o can change the value.

document.myForm.mySelectField.options.selectedIndex

| NENES

search (location)

The search property of the 1Tocation object is used to access
the portion of the location URL that contains query information
(that is, form input fields sent to a CGI program to be used for a
document-based search of a database). A valid search value is

a string that begins with a question mark (?) followed by any
number of attribute-value pairs, each separated by an ampersand
(8). You can change the value for search.

selectedIndex (select)

Use the selectedIndex value to access the index of a select
object. If multiple options have been selected, the value of
selectedIndex contains a reference only to the index of the very
first option selected. The value for seTect.selectedIndexis
the same as for options.selectedIndex, and you can change
the value.

document.myForm.mySelectField.selectedIndex

self (frame)

The self property of the frame object is a synonym for the
current frame. (Gee, and all those philosophers spent so much
time searching for the meaning of self! If only they had coded
JavaScript!) The value for self is read-only.

self

document.location.search

P

e Try out any of the popular Web search engines, such as Yahoo!,
AltaVista, or Excite, and you can see the value of the searc h
property being sent to the respective CGI programs — right there
in either Navigator’s Location: window or Internet Explorer’s
Address window. For instance, when I asked the AltaVista search
engine to fetch all the JavaScript-related Web pages it could find,
here’s what appeared in my Location: window:

http://www.altavista.digital.com/cgi-bin/
query?pg=q&what=web&fmt=.&q=JavaScript

f-

P

b

B

8 self (window)

The self property of the window object is a synonym for the
current window. The value for self is read-only.

self

e
!

L

SORT1_2

-

SORT1_2

The SQRT1_2 property of the Math object represents the math-
ematical constant for the square root of !/2 (approximately .707).
Its value can’t be changed.

Math.SQRT1_2

SORT2

The SQRT2 property of the Math object répresents the mathemati-
cal constant for the square root of two (approximately 1.414). Its
value can’t be changed.

Math.SQRT2

-
ol

target (form)

Use the target property of a form to access a string that speci-
fies the window in which you want to receive responses from the
server. The value for form.target is initially defined by the
TARGET attribute as part of the <FORM> . . . </FORM> tag pair, but
you can change it.

document.myForm.target

target (link, area)

Use the target property of a 1ink or area object to access a
string that identifies the name of the window a linked (or area
mapped) document should be loaded into. The string value for

link.target is initially defined by the TARGET attribute of the
sre E <A>... tag pair, and the string value for area.target is
! initially defined by the TARGET attribute of the <AREA> tag; you
The src property of the image object reflects the value of the SRC can change the values for both if you wish. .
attribute defined as part of the HTML tag. A valid value for] // same syntax for both link and area objects
this property is a URL for the image to be loaded. F document.links[0].target
document.mylImage.src |
E} text
atus S
st ; Use the text property of the option object to access the text
The status property of the window object contains a text value T that follows an <OPTION> tag that is defined as part of a select
that appears in the window’s status bar. You can change the ! object. You can change the value for this object.
status property’s value.) document.myForm.mySelectField.options[0].text
status - e, . N . ‘ .
3 At the time of this writing, the options[0].text property is
bl The status property is different from the defaultStatus 1 i read-only in Internet Explorer 3.0.
property. The value of the defaultStatus property is displayed
in the status bar when nothing else is going on. In contrast, the _ N I
value of the status property is displayed for a specific reason — ‘ tl t e
for example, in response to an onMouseQver event (see also Part J
VIII, “Event Handlers,” for more on events). The tit1e property of the document object enables you to
- access the title of a document (the text that is defined between
o ! the <TITLE>...</TITLE> tag pair). The tit1e property’s value
Y/ f f ixes i & is read-only. For example:
The value for the suffixes property of the mimeTypes array 1 _ SHEAD>CTITLE> , _ '
represents a string listing, separated by commas, of all possible V<J<;1T%_?TE>E?H E/?BE ram's Beanie Emporium
file suffixes (file suffixes are sometimes called file extensions) - B
available for each corresponding MIME type.
navigator.mimeTypes[0].suffixes !J]

- -
1 |

value
top - userAgent
The top property of the window object refers to the topmost ., - The userAgent property of the navigator object enables you to
window that contains frames or nested framesets. Its value is access a string value that represents the user-agent header (some
read-only. computer-to-computer chit-chat that’s roughly equivalent to “Hey,
it’s me again, the machine at port 123.456.7890”). Navigator
top

automatically sends a user-agent header each time a form is
submitted from a client browser to a server. Servers use this value
(. to identify the client that’s making a request; it's read-only.

type

i

; navigator.userAgent
The type property is available on many different objects. The

i f bject.
s type property represents the HTML TYPE attribute for an objec E - v a (u e
R At the time of this writing, only Netscape Navigator Version 3.0 ; |
supports the type property. The value property represents a string that’s associated with the
— value of whatever object you're trying to access.
Object Usage Return Value E
] _ .
button document.myForm.myButton.type "button" Object Usage Comments .
Checkb type "checkbox" - button document.myForm.myButton.value Read-only value is
checkbox document.myForm.myCheckbox.typ D displayed on button face
fileUpload document.myForm.myFile.type ‘file” J. checkbox document.myForm.myCheckbox.value Valueis sent to server
- -] A "hidden" when checkbox is
hidden document.myForm.myHidden Zyp . — _ clicked (default is “on”)
password document.myForm.myPassword.type pas§w2 D fileUpload document.myForm.myFileUpload.value Reflects the value
radio document.myForm.myRadio[0].type "radio - _ selected by a user
reset document.myForm.myReset.type "reset” hidden document.myForm.myHidden.value Initially reflects the
" - VALUE attribute
.myForm.mySelect.type "select-one", : :
sefect document . my Y P "select- ' option document.myForm.mySelect. Value is sent to server
multiple” = - options[0].value when option is selected
(MULTIPLE) password document.myForm.myPassword.value Initiallyrefle_ctsthé
submit document.myForm.mySubmit.type "supmit"” ‘] VALUE attribute
" " ‘ radio document.myForm.myRadio[0].value Valuei tt
text document.myForm.myText.type text : ” . y y [0] v;ah:ﬁ Icsh?e?;ll](bog(sigwer
textarea document.myForm.myTextarea.type "textarea 1 clicked (default is “on”)
‘ reset document.myForm.myReset.value Read-only value is
. ‘ 3 displayed on button
type (m ime Types) face; default is “Reset”
) submit document.myForm.mySubmit.value Read-only value is
. . ; displayed on button
The type property of the mimeTypes array, instead of represer}tlng . . but .
the HTML TY PE attribute the way it does for all of the other ob]ef:ts, = f(illtl:;:yqefau't is “Submit
represents one of the MIME types supported by a browser session. toxt d iti
: : ier i i ocument.myForm.myText. ts th
See also the mimeTypes property described earlier in this part. ..J - nt.my yText.value I\?KlfuyErgﬂtErli(iJ Ste e
navigator.mimeTypes[0].type b textarea document.myForm.myTextarea.value lInitially reflects the
VALUE attribute
ek options array document.myForm.mySelect. Value is sent to server
.] options[0].value when option is selected

|

vlinkColor

The v1inkColor property enables you to access the value
defined by the VLINK attribute declared as part of the
<BODY>...</BODY> tag pair. The v1inkColor property defines
the color of a clicked-on, or followed, link. You can change the
value for the VLINK attribute to a hexadecimal RGB triplet or to -
a predefined color string that corresponds to such a triplet.

i i

Event Handlers

An event handler is a piece of code attached to some
object that a Web user may interact with, like a push

b button, a link, a text field, and so on. When the user
v S p ace ‘ falls into your JavaScript-powered little Web page and

i does something like “clicking on a Submit button,” the
event handler executes some JavaScript instructions
associated with that user’s action. For example, when
the user rolls the mouse pointer over a hypertext link,
‘ an event handler runs some code that make the URL

appear in the Web browser’s status bar.

document.vlinkColor

3

Ld

The vspace property of the image object enables you to access
the value of the VSPACE attribute of the HTML tag. This
value specifies a margin (measured in pixels) between the top and
bottom edges of an image and the surrounding screen real estate.
This property only applies to images that have “left” or “right” :
defined for the value of the ALIGN attribute of the tag. This part shows you the various JavaScript event
handlers that you can use in your HTML code to make
your Web page more interactive and intuitive to users
who visit your Web site.

document .myImage.vspace

i Il

width

In this part . . .

v Getting familiar with the different event handlers

v
i §

The width property of the image object lets you access the value
of the WIDTH attribute of the HTML tag. A valid value for
the width property can be either an integer (measured in pixels),
or a percentage (expressing a percent of total window width). The
value for this property is read-only.

v+ Understanding event handler syntax

i }

+* Calling event handlers

document.myImage.width

—

window

The window property is a synonym for the current window (or
current frame, because frames are windows). The value for this
property is read-only, and it’s also the same as the self property
of the window object.

§

- o
0

About Events

About Events

TP

In JavaScript, event refers to some action (usually user-initiated)
that affects an HTML form element. Some examples of user-
initiated events include

+ Clicking (affects push buttons and radio buttons)

4 Checking (affects check boxes))

+ Selecting (affects text elements and list boxes)

4 Changing a value (affects text and textarea elements)
You use an event handler to have the browser invoke a set of

JavaScript statements automatically whenever the associated
event occurs.

In Navigator 3.0, you can reset the function initially assigned to an

event handler in an HTML statement by using a JavaScript statement.
The following code snippet is an example of how you can reset the
value of onBlur to a new function called someOtherFunction():

document.myForm.1astName.onb]ur=“some0therFunction“

Notice the lack of parentheses in the preceding assignment? (It’s
not someQ0therFunction(),it’s someOtherFunction.) When
you reset the value for an event handier, you have to leave off the
parentheses. Trust me, you don’t want to know why.

onAbort

The onAbort event handler is associated with the Image object
and can be used to trigger the execution of some JavaScript code
each time users abort, or stop loading, an image in a Web page.
Users can abort an image load by clicking the Stop button on their
Web browsers while the image is loading (which they typically do
if the image is so large that they become impatient).

Syntax:
onAbort="event handiing text"

Example:

The onAbort event handler is only available on the Image object,
as shown in the following code:

<IMG NAME="thistle" SRC="images/thistle.gif"
onAbort="alert('You missed a great picturel')">

! | i .

P—

onBlur

TP

onBlur is an event handler associated with the frame, select,
text, textarea, and window objects. onBlur is invoked when an
element blurs, or loses focus. Put another way, blurring occurs
when a user clicks on one form element and then clicks on a new
element, changing the focus from the first element (which is now
blurred) to the new element (which is the focus of the next event,
waiting to respond to user input).

onBlur events on the select, text, and textarea objects
provide a great opportunity to do any field-level validation that
you need to do. The user presumably has finished entering text or
making a selection, so if you invoke a function to validate the field
at this point, you can get back to the user immediately if a prob-
lem exists. See also “Validating User Input” in Part IX.

Syntax:

onBlur="event handling text"
Example:

You can use the onB1ur event handler with the frame, select,
text, textarea, and window objects. The following sections
contain examples of onB1ur for each object.

frame

The first chunk of code below defines a frame named framel

whose source is the HTML file framconl.html; the second chunk

(;f code1 shows how the onB1ur event handler is implemented for
ramel.

<FRAMESET ROWS="50%,50%" COLS="40%,60%">
<{FRAME SRC="framconl.html1" NAME="framel">
<FRAME SRC="framcon2.htm1" NAME="frame2">
</FRAMESET>

(The following code, which defines the frame framel, is from the
file called framcon1.html highlighted in the preceding code
sample.)

<BODY BGCOLOR="1ightgrey"
onBlur="document.bgColor="black""
onFocus="document.bgColor="white'">

select

<FORM>

Product: <SELECT NAME="productSelection" SIZE=1
onBlur="processSelection(this)">

<OPTION VALUE="shirt"> t-shirt

(continued)

?s‘ TM‘.*

@

OnChange

(continued)

<OPTION VALUE="pen"> ball-point pen
<OPTION VALUE="weight"> monogrammed paperweight
</SELECT>

text

Last name: <INPUT TYPE="text" VALUE=""
NAME="1astName" SIZE=25 R
onBlur="verifyExistence(this.value)">

textarea

<TEXTAREA NAME="commentField" ROWS=5 COLS=50

onBlur="if (lthis.value) { confirm('Are you sure
you don't want to comment?')}">

</TEXTAREA>

</FORM>

window

<BODY BGCOLOR="1ightgrey"
onBlur="document.bgColor="black""
onFocus="document.bgColor="white"'">

When calling a function from an event handler, passing along a
copy of the object that’s involved is a great idea. You can do this
by passing the this keyword; that way, you can keep your
function code generic enough to reuse over and over again.
This code fragment, repeated from an earlier section, shows an
example of this:

Last name: <INPUT TYPE="text" VALUE=""
NAME="TastName" SIZE=25
onBlur="verifyExistence(this.value)">

When a user blurs the 1astName field, the JavaScript interpreter
calls the verifyExistence() function and passes it
this.value. Instead of having to know what form element value
to access in verifyExistence() (Yecch, hard coding! The root
of all evil!), all you have to do in verifyExistence() is work
with the generic value passed in.

onChange

The onChange event handler is similar to onB1ur, except that
onChange is invoked only if some change has been made in the
value of a select, text, or textarea element, in addition to the
loss of focus. Depending on your application, sometimes you may
want to call the functions that do your field-level validation from
an onChange event handler instead of from onB1ur. That way, a
value is verified only if it has changed, not just when a user moves

L

PR
v

S

—

onClick |

to a different area of the form. (Why go to all the trouble of
revalidating a value if you know that the value hasn’t changed
since the last time that you validated it?) See also “Validating
User Input” in Part IX.

Syntax:
onChange="event handling text"

Example:

You can use the onChange event handler with the select, text,
and textarea form elements. The following sections contain
examples of each event handler.

select

<FORM>
Product: <SELECT NAME="productSelection" SIZE=1
onChange="processSelection(this)">
<OPTION VALUE="keyring"> key ring
§8g¥%8ﬁ ¥ﬁtHE=";weat"> sweatshirt
="horn"> monogrammed sh
</SELECT> ’ shoehorn

text

Last name; <INPUT TYPE="text" VALUE=""
NAME="TastName" SIZE=25
onChange="verifyExistence(this.value)">

textarea

<TEXTAREA NAME="c9mmentF1e1d“ ROWS=5 COLS=50
onChange="if (lthis.value) { confirm('Are you sure
you don't want to comment?')}">
</TEXTAREA>
</FORM>

onClick

nRN/,
Yo,

A browser invokes the onC11ick event handler when the user
clicks on a clickable form element.

Navigator 3.0 enables you to stop an onC11 ck event if your event
handler code returns false (0). For example, the following code
snippet allows users to change their minds after they click on the
link and stop the link URL from loading if they press the “Cancel”
button displayed by the confirm() method. (See also the
“confirm” section in Part VL)

<A HREF="http://www.dummies.com"

onClick="return confirm('Okay to go ahead and
connect?')">

Dummies Press Homepage

RN/,
S,

*‘M\Nl&f

OnClick

Internet Explorer 3.0 doesn’t support this feature at the time of
this writing.

Syntax:
onClick="event handling text"

Example:

You can use the onC11ick event handler with all the following form
elements: button, checkbox, 1ink, radio, reset, and submit.
The following sections contain examples of each.

button

CINPUT TYPE="button" NAME="orderNow" VALUE="order"
onClick="tallyOrder()">

checkbox

<INPUT TYPE="checkbox" NAME="firstBook"
VALUE="firstBook"

onClick="if (this.checked) { sendThankYoulLetter()
}l|>

Is this your first ...For Dummies book purchase?

link

<A HREF=""
onClick="this.href=pickURLBasedOnUserPreferences()"
> You'll want to see this!

radio

Which is your favorite vacation destination?

<INPUT TYPE="radio" NAME="vacationSelection"
VALUE="beach"

onClick="displayPage('beachfront property')">
The beach

<INPUT TYPE="radio" NAME="vacationSelection"
VALUE="mountain"

onClick="displayPage('mountain cabins')">
The mountains

<INPUT TYPE="radio" NAME="vacationSelection”
VALUE="city"

onClick="displayPage('posh hotels')"> Anywhere I
can get room service

reset

CINPUT TYPE="reset" NAME="reset" VALUE="Clear form"
onClick="resetCalculatedTotals()">

Netscape Navigator running on a Windows platform doesn’t care if
you return a value of false for a reset onC1ick event handler; it
goes ahead and resets the form no matter what happens when a
user clicks the reset button — even if you think you stopped the
reset from happening in the onC11ick event handling code.

!

i i

[

A

i

[

-

e

e Bd

onFocus
submit
<INiUT TYPE="submit" NAME="submit" VALUE="Submit
orm"

onClick="checkConsistency()">

onError

hild

You can use the onError event handler to trigger the execution of
some JavaScript code every time an error occurs while a user is
attempting to load either an image (the Image object) or a
document (the window object). A good use for the onError event
handler is to invoke a custom function designed to examine the
error, figure out what caused it, and then suggest solutions.

Syntax:
onkrror="event handier text"

Example:

You can use the onError event handler with both the Image and
window objects. The following code shows examples of each.

Image

<IMG NAME="noSuchAnimal" SRC="dummy.gif"
onkError="alert(document.myForm.noSuchAnimal.name +
' could not be Toaded')">

window

window.onerror=myOnErrorHandler
funition myOnErrorHandler(message, url, lineNumber)

return true

Don’t want your users to see any JavaScript-generated errors for a
particular document? You can head them all off at the pass before
they're displayed to the user by setting the onError event
handler equal to null, like this:

window.onerror = null

onFocus

onFocus is an event handler associated with the frame, select,
text, textarea, and window objects. Think of this event handler
as the anti-onB1ur; instead of responding when an object loses

M\Nlﬁy@/

onFocus

focus, onFocus is invoked when an object gains focus. (An object
gains focus when a user tabs to, or clicks on, the object.)

You might expect that selecting text in a text or textarea
element would trigger the onFocus event handler because
selecting text implies clicking on that text, which should (in turn)
give focus to that element. Well, that conclusion is logical, but it’s
incorrect. JavaScript considers text selection within a field a
special case; instead of calling the onFocus event handler,
JavaScript invokes the onSelect event handler.

See also “onSelect,” later in this part.

Guess what happens if the code that’s invoked by the onFocus
event handler contains a call to a dialog box ? Well, after the
element gets focus, the dialog box pops up. The user clicks OK or
Cancel or whatever. Focus returns to the element. The dialog box
pops up. The user clicks OK or Cancel or whatever. Focus returns
to the element. The dialog box pops up. . . . Can you say endless
loop? Please, don’t try this at home!

Syntax:
onFocus="event handler text"

Example:

You can use the onFocus event handler with the frame, select,
text, textarea, and window objects. The following sections
contain examples of each.

frame

The first section of code below defines a frame named framel
whose source is the HTML file framconl.htm1; the second
section shows how the onFocus event handler is implemented for
framel. '

<FRAMESET ROWS="50%,50%" COLS="40%,60%"
onLoad="display()">

<FRAME SRC="framconl.html" NAME="framel">
<FRAME SRC="framcon2.html" NAME="framez2">
</FRAMESET>

The following code fragment is found in the file called
framcon1.html referenced in the preceding code.

<BODY BGCOLOR="T1ightgrey"
onBlur="document.bgColor="black""
onFocus="document.bgColor="white'">

eed Bd

—

-l

T e

-

[

.

‘ " ! , .
T

onLoad

select

<FORM>

Product: <SELECT NAME="productSelection" SIZE=l
onFocus="validateDependentFields()">

<OPTION VALUE="shirt"> t-shirt

<OPTION VALUE="mug"> mug

<OPTION VALUE="rag"> monogrammed dishrag
</SELECT>

text
Last name: <INPUT TYPE="text" VALUE=""

NAME="TastName" SIZE=25
onFocus="validateDependentFields()">

textarea

<TEXTAREA NAME="commentField" ROWS=5 COLS=50
onFocus="validateDependentFields()">
</TEXTAREA>

</FORM>

window

<BODY BGCOLOR="white"
onBlur="document.bgColor="orange'"
onfFocus="document.bgColor="green'">

onLoad

The onlLoad event handler is associated with both the window
(frame) object and the image object. You can use the onLoad
event handler of the window object in two ways:

4+ To trigger some JavaScript code immediately after a window
loads

4+ To trigger some JavaScript code immediately after all the
frames in a frameset load

If you define an onLoad event handler for both the window
(in the <BODY>...</BODY> tag pair) and for a frameset (in the
<FRAMESET>...</FRAMESET> tag pair), the onLoad event
handler associated with the window executes first, and then the
onlLoad associated with the frameset executes.

onlLoad gives you the opportunity to do any initialization neces-
sary for your application — things that need to be done before the
user gets a crack at the page or the image. You may want to
display the current date and time, for example, or play a little
welcoming tune.

onMouseOut

Syntax:
onLoad="event handler text"

Example:

You can use the onLoad event handler with either the image
object or the window (frame) object. The following section
contains examples of both types of event handlgrs.

image

<IMG NAME="thistle" SRC="images/thistle.gif"
onLoad="beginAnimation(this)">

window

<BODY onload="displayCustomWelcome()">

<FRAMESET ROWS="50%,50%" COLS="40%,60%"

onLoad="1initializeVariables()">

<FRAME SRC="framel.html" NAME="framel")

{FRAME SRC="frame2.html" NAME="frame2">
</FRAMESET>

onMouseOut

Use onMouseQut to recognize when a user moves the mouse
pointer off a link or an area. One onMouseOut event is generated
each time that a user moves a mouse from a 1ink or area to
someplace else on the form.

Syntax: 7
onMouseQut="event handler text"

Example:

onMouseOQut is available for both the Area and 11nk objects, as
shown in the following examples.

area

<MAP NAME="thistleMap">

<AREA NAME="topThistle" COORDS="0,0,228,318"
HREF="javascript:displayMessage()”)

onMouseQver="self.status="When you see this mes-
sage, click your left mouse button'; return
true”

onMouseQut="self.status="";

</MAP>

link

<A HREF="http://home.netscape.com/"
onMouseQut="status='Thanks for visiting;
true">

Netscape

return true">

return

i
t

I

v

J

onMouseOver

nRN/y, 6,

If you want to set the value for the status bar, as in this example, I
remember to return a value of true in the last JavaScript statement
in the handler — otherwise, the value won'’t appear in the status bar.

onMouseOver

~’\pJWI o,

@)

UseonMouseQver to recognize when a user moves the mouse
pointer over a link (or over an area). One onMouseQOver event is
generated each time that a user moves a mouse to the link or area
from someplace else on the form.

You can use this event handler to display a custom message in the
status bar at the bottom of a document (instead of the default
message) when a user drags a mouse pointer over a link or area.
JavaScript automatically changes the user’s mouse pointer from an
arrow into a little hand when the pointer is dragged over a link or
an area.

Syntax:

onMouseOver="event handler text"

Example:

onMouseOver is an event handler of area and 1ink objects.
Examples of both types follow.

area

<MAP NAME="thistleMap">

<AREA NAME="topThistle" COORDS="0,0,228,318"
HREF="javascript:displayMessage()"

onMouseOver="self.status="When you see this mes-

sage, click your Teft mouse button': return
true"
onMouseQut="self.status="'"; return true">
</MAP>
link

<A HREF="http://home.netscape.com/"
onMouseOver="status="Visit Netscape'; return
true">

Mystery Link

If you want to set the value for the status bar, as in this example,
remember to return a value of frue in the last JavaScript statement
in the handler. If you don’t, the interpreter ignores you and the
status bar displays the default value — the URL of that link.

OnReset

onReset

Use the onReset event handler of the form object to trigger some
JavaScript code to execute each time that a user clicks a Reset
button on a form.

Syntax:
onReset="event handler text"

Example:
The onReset event handler is only available on the form object:

(FORM onReset="alert('The form values have been
reset.')">

onSelect

RN,
N IQ/

Use onSelect to trigger some JavaScript code to exccute each
time that a user selects (highlights with the mouse) some part of
the text displayed in either a text or a textarea field.

Syntax:
onSelect="event handler text"

Example:

Use the onSelect event handler with either the text or the
textarea form elements. The following sections show examples
of each.

text

Last name: <INPUT TYPE="text" VALUE=""
NAME="TlastName" SIZE=25 onSelect="showHelp()">

textarea

(TEXTAREA NAME="commentField" ROWS=5 COLS=50
onSelect="showHelp()">

</TEXTAREA>

</FORM>

In both the preceding examples, the function showHelp() is
supposed to be called by the onSelect event handler when a user
selects any text contained either in the 1astName field or the
commentField field. Unfortunately, it isn't! Netscape Navigator

3.0 (and earlier), as well as some early versions of Internet
Explorer, ignores the onSelect event handler.

BE e Bl

L}

onUnload |

onSubmit

N.nmo/

Use the onSubmi t event handler of the form object to gain more
control over the form-submission process. When you use a

Submi t object (a button that automatically submits a form when a
user clicks on it), you have no way to keep the form from being
submitted after the button has been clicked — even if you return
false to the Submit object’s onC11ck event handler.

A way does exist to bail out at the last minute by using the
onSubmi t event handler instead. All you need to do is return a
value of false to onSubmi t if you don’t want to go through with
the submit, and a value of true if you do. Often the criterion you
use to make your decision is the return value of a function whose
job in life is to look at the input data in its entirety to see if it’s
complete enough to bother submitting to the server, such as the
verifyFormData() method in the example code below.

The default return value for the onSubmit event handler is true, so
if you forget to return a value explicitly, the form will always be sent.

Syntax:
onSubmit="event handler text"

Example:

function verifyFormData(incomingForm)

if (// all the relevant values of incomingForm
// are valid based on some criteria you
// define) {
return true

else {
return false
}

}

form.onSubmit="return verifyFormData(this)"

onUnload

Just like its counterpart, onLoad, you can use the onUn load
event handler associated with the window (frame) object in two
ways: to trigger some JavaScript code immediately after a window
has been unloaded (exited) or to trigger some JavaScript code
immediately after all frames in a frameset have been unloaded.

If you define an onUn10ad for both the window (in the <BODY>. ..

._.*

e L

onUnload

—

</BODY> tag pair) and for a frameset (in the <FRAMESET> . ..
<{/FRAMESET> tag pair), the onUnload associated with the
window executes first, and then the onUnToad associated with
the frameset executes.

- -
|
b

Syntax:

Cool Things You Can Do

onUnload="event handler text"

i g)
Example: WI th]ﬂ(/ascr ’”t
<BODY onUnload="cleanUp()"> !
<FRAMESET ROWS="50%.50%" COLS="40%.60%" . . i Everything you ever wanted to know about how to use

JavaScript in your Web pages (but were afraid to ask!)
is in this part. Some of the coding tips are HTML-

o based; others are pure JavaScript. Most of these
examples show things you’ll want to try out in your
own Web pages; all of the examples come complete
with working example code.

onUnload="cleanUpFrameData()">

<FRAME SRC="framel.htm]" NAME="framel">
<FRAME SRC="frame2.html" NAME="frame2">
</FRAMESET>

In this part . . .
v Adding multimedia to your Web page

Ll

1~ Integrating other components with JavaScript

+ Hiding your JavaScript source code from prying
_J eyes

»~ Validating user input and communicating the
- results to your users

[
]

|) W |
!

Adding Multimedia to Your Web Page

Adding Multimedia to Your Web Page

You can add images, all kinds of different colors, sounds, and even
animation to your Web pages.

Color

Using color is a good way to add interest and flash to your Web
pages. You can specify different colors for any or all the items
described in the following table. (See also Appendix B for a list of
all of the predefined colors that you can use.)

HTML <BODY> Attribute

Description JavaScript Syntax

BGCOLOR Background color document.bgColor
TEXT Foreground color document.fgColor
LINK Unfollowed link color document.linkColor
ALINK Activated link color document.alinkColor
VLINK Followed link color document.vlinkColor

Two ways exist to change the color of the elements in the preced-
ing table: via HTML statements inside the body section of your
HTML file, and via JavaScript statements. Here’s an example of
each approach:

<BODY BGCOLOR="1ime"
TEXT="darkblue"
LINK="bTack"
ALINK="antiquewhite"
VLINK="orange">

document.fgColor = "yellow"

But wait! There’s more. Here’s one more way to change the color of
text displayed in your Web page: the fontcolor () method of the
String object. Here’s how it works:

Syntax:
aString.fontcolor("someColor")

Example:

document.write("This is dark]
orchid.".fontcolor("darkorchid"))

| .

g

Adding Multimedia to Your Web Page

TP

TP

Moving images

You can take three basic approaches to integrate animation and

~ movies into your Web pages:

+ Create a hypertext link to an animation file: Some popular
animation file formats include .avi, .dvi, .fli, .mov, .mpg, and
animated .gif. See also “Web-Surfing: Creating Hypertext Links”
later in this part for the scoop on how to set up a hypertext link.

+ Add a plug-in that plays animation files: One such plug-in is
Shockwave for Director from Macromedia, which enables you
to play Director movies inside your Web pages. See also
“Calling Other Components from JavaScript” later in this part.

To learn more about the Shockwave for Director plug-in, visit
_ the following URL:

http://www.macromedia.com/shockwave/

4+ Use a Java applet that plays animation files: To find out how
to integrate your script with a Java applet, see also “Calling
Other Components from JavaScript,” later in this part.

Pictures

Inserting pictures into your Web page is brought to you courtesy
of the HTML tag. Here’s an example:

<IMG SRC="1images/mouse.gif" ALIGN="TQP"
ALT="[Rupert the Mousel">

If you don’t specify a path name for your image source (such as
http://www.bogus.com/images/filename.gif), your Web
browser looks for the image file in the directory where your .html
file is located. ’

Sound

Adding sounds to your Web page can be a great attention-getter,
but there’s a downside. Sound files (which typically have exten-
sions of .ra, .sbi, .snd, .au, or .wav) are notoriously huge, which
means that users loading your sound-enabled Web page may have
a long wait ahead of them. Remember, too, that not everyone on
the Web is equipped with sound-playing software and speakers.

The best way to add sound to your Web page is to specify a link to
a sound file. That way, users who know they aren't set up for
sound (or who are in a hurry) can choose to skip your aural tidbit.
See also “Web-Surfing: Creating Hypertext Links” later in this part
to get all the details on creating links.

l_-_L_’

' Calling Other Components from JavaScript Calling Other Components from JavaScript

In the code above, the statements between the <OBJECT>. . .
<{/0BJECT> tags embed an ActiveX component in a Web page.
The showButton’s onC11ck event handler calls a function
(showProperties()) that displays the embedded ActiveX

1 =
| —

Calling Other Components from JavaScript

You can tie software components together with JavaScript to

create knockout Web applications. At the time of this writing, you
have three choices, depending on which Web browser you expect
users to use to view your finished product: ActiveX components,

Java applets, and Netscape plug-ins.

ActiveX components

component’s properties to the user, while the cal1Button’s
onC11ck event handler calls a method (AboutBox()) on the
embedded component itself. See also the “ActiveX component”
section in Part I.

At the time of this writing, only the latest version of Internet

Explorer (3.01) can interact with ActiveX components, although a
plug-in for Navigator is being developed that may provide ActiveX
compatibility for Netscape Navigator.

ActiveX components are software modules that are compatible not
only with Internet Explorer, but with non-Internet-related Microsoft
client applications, too. The following code snippet shqws hoyv ‘
you can integrate an ActiveX component into a JavaScript script in
Internet Explorer by using the <OBJECT> tag:

function show?roperti%s() {
alert("Label properties: v
document.myForm.spribll.Angle + ", S
document.myForm.spr1bl1l.Alignment + o +
document.myForm.spr]b}%.BackSty1e + ", +
11
11

Check out the following URL for a list of available ActiveX compo-
nents, along with the unique programming information for each.
You'll need to hook ’em up to your JavaScript scripts (like their
class identifier, any parameters they require, and so forth):

http://www.microsoft.com/intdev/controls/
ctriref-f.htm

;

document.myForm.spr1bll.Caption + ", " +

" For the latest details on the development of a plug-in that can make
document.myForm.spribll.FontName + ", +

ActiveX components compatible with Navigator, visit this site:

A+

. 1b11.FontSize)
) document.myForm Spr http://www.ncompasslabs.com/products/
scriptactive.htm

</SCRIPT> E ,

<BODY>

<FORM NAME="myForm">]m/a app ets

<0BJECT . . You can embed Java applets into your Web pages with the help of
°188218322}362399542120"6EC7‘110F_A6C7 ! the <APPLET>. ..</APPLET> tag pair. See also Part I.
id=sprlbll] S, HTML support for Java applets is provided both by Navigator and
width=150 Internet Explorer; however, JavaScript/applet interaction is
Cg;ggg:goo currently only supported by Navigator.

align=left> . ., .

<param name="Angle" value= 270">“

<param name="Alignment” va1ue=“2">

<param name="BackStyle" value="0"> .

<param name="Caption" value="JavaScript!”> .

<param name="FontName" va1ue="T1Tes New Roman">

<param name="FontSize" value="40">

</0BJECT> .
CINPUT TYPE="button" value="Look at control's

roperties”] .
NAME;"fhowButton" onClick="showProperties()">

 ' .
<INPUT TYPE="button" value="Call control's method

NAME="callButton")
onClick="document.myForm.spribll.AboutBox()">

Following is an example of a JavaScript statement that invokes a
method called changeText () on a Java applet (check out the
onC1ick event handler):

<APPLET CODEBASE="http://home.netscape.com/comprod/
products/navigator/version_3.0/developer"
NAME="NervousApplet" CODE="NervousText.class"
WIDTH=400 HEIGHT=50>
<PARAM NAME=text VALUE="Enter your text here.">
</APPLET>
:

i <INPUT NAME="InputText" TYPE=text SIZE=35
VALUE="Enter your text here.">

<INPUT TYPE=button WIDTH=200 VALUE="Click here to
change text."
;] onC11ick="document .applets[0].changeText(form. InputText.value)">
1

fri—
k
i

e

TP

Calling Other Components from JavaScript

To find out the names of applet properties and methods that you
can access, you can either scout out other Web pages that embed
the applet, or go right to the source (the applet developer) to get
official documentation.

Netscape plug-ins

At the time of this writing, only Navigator’s implementation of
JavaScript can interact with plug-ins.

Netscape plug-ins are embedded into HTML files with the <EMBED>
tag. See also the “Plug-in” section in Part .

Before you try this example, you need to download the Envoy
document management plug-in from Tumbleweed Software and
install it in Navigator’s /Program/plugins directory on your hard
drive. Here’s where you can find the Envoy plug-in:

http://www.tumbleweed.com/download.htm

The following code shows how to access an embedded Netscape
plug-in’s innards via JavaScript:

<HTML><HEAD><TITLE>Embedded Plug-In Example</TITLE>
<SCRIPT LANGUAGE="JavaScript">

function displayFlag(flagToDisplay) {
document.envoyPlugin.setCurrentPage(flagToDisplay)
document.envoyPlugin.executeCommand(601)

</SCRIPT>

</HEAD>

<BODY>

<FORM NAME="myForm">

<EMBED NAME="envoyPlugin"

SRC="http://www.tumbleweed.com/evy/flags.evy"
WIDTH=300

HEIGHT=250

BORDER=0 INTERFACE=STATIC ZOOM=fitwidth

PLUGINSPAGE="http://www.tumbleweed.com/plugin.htm">

<H2> Select a flag to display:</H2>
<INPUT TYPE="radio" NAME="flagToDisplay"
onClick="displayFlag(1)"> U.S.

{INPUT TYPE="radio" NAME="flagToDisplay”
onClick="displayFlag(4)"> Germany

<INPUT TYPE="radio" NAME="flagToDisplay"
onClick="displayFlag(8)"> Canada

<INPUT TYPE="button" NAME="test"

VALUE="Get Number of Embeds” .

onClick="alert('Number of embedded plug-ins in this
document: ' ‘

+ embeds.length)”

|
7 i 7]
d boed ld L

-

E

i

't
b

i

Creating Your Own JavaScript Objects

</FORM>
</BODY>
</HTML>

The plug-in is embedded in the page with the <EMBED> tag. When
a user selects one of the radio buttons defined in the form (the
choices are U.S., Germany, or Canada), the displayFlag()
function is called. The values that are being passed into the
displayFlag() function (1, 4, and 8) mean something special to
the plug-in. To get hold of plug-in specific values and methods, you
can either scout out other scripts that access the plug-in, or go
right to the source (the plug-in developer) to get official plug-in
documentation. For instance, you wouldn’t know that the Envoy
plug-in supported the methods being called from displayFlag()
—setCurrentPage() and executeCommand() (or how to call
them) unless the plug-in developer clued you in.

Creating Your Own JavaScript Objects

)

As you may know, true object-oriented languages allow you to
inherit from existing objects to create your own new objects (that
is, base new objects on old ones so you can get away with writing
less code). Because JavaScript isn't technically object-oriented
(it’s object-based), you can’t inherit from existing objects to create
your own objects in JavaScript, but you can make your own
objects from scratch using the new operator and a function or two.
In the code example that follows, I create a virtual pet that can
talk. Read on for all the exciting details.

function talkFunction(kindOfPet){
if (kind0OfPet == "dog")
document.writeln("bow-wow!")

else {

if (kindOfPet == "cat") {

} document.writeln("meow-meow-meow")
else {

document.writeln("I'm speechless.")

}
function Pet(inputName, inputKind, inputColor) {
this.name = inputName
this.kind = inputKind
this.color inputColor
this.speak = talkFunction(inputKind)

Displaying Scrolling Text

Given the two functions shown in the preceding example, you can
create as many instances of Pet as you want:

var myCat = new Pet("Boots", "cat", "orange
striped”)

var myDog = new Pet("King", "dog", "gray and
brown™)

var myFish = new Pet("Bubbles", "goldfish", "or-
ange")

And when you want one of your virtual pets to speak, all you have
to do is this:

myCat.speak
myDog.speak
myFish.speak

Because myCat, myDog, and myFish contain both properties and
methods (okay, one method), they're bona fide, card-carrying
objects. They can even contain or be contained by other objects.
For example, you may want to create an object called Person and
show a relationship between your instances of Person and Pet, like
this:

function Person(inputName, inputAge, inputSex,
inputPet){
this.name = inputName

this.age = inputAge
this.sex = inputSex
this.pet = inputPet
1
var aDog = new Pet("King", "dog", "gray and brown")
var petOwner = new Person("Bertha", "33", "Female",
aDog)
alert("Here is Bertha's dog's name: " +

petOwner.pet.name)

Take a look at the last three JavaScript statements in the code
snippet above. See how an instance of Pet is being created and
named aDog? Directly after that, a new Person, called petOwner,
is created — and aDog (the entire object) is being passed to the
Person constructor. To prove that this association worked
properly, the last statement displays the value for
petOwner.pet.name — which (and you can try this out for
yourself) is “King.”

Displaying Scrolling Text

The following example displays scrolling text in the browser’s
status line, but you could display it anywhere else on the Web
page just as easily.

]
|-

]

'

i

§

]]
ed Cned

d

Displaying the Contents of Nested Objects

SMALe

AR le,e/

i

function displayBanner() {
var lengthToScroll
var message = "Your message here..."
var rateToScroll = 85
var displaylLength = 100

// Hqcreasing rateToScroll slows down the

scro

1%ngthToScro11 = (rateToScroll/message.length)

+

for(var i=0; i<=TengthToScroll;
message += " " + message

i++) |

// place it in the status bar
status = message.substring(position, position +
displaylLength)

// set new position
if(position++ == message.length){
position = 0

// repeat scrolling action
| id = setTimeout("displayBanner()",1000/35)

</SCRIPT>

%éé%y onLoad="window.status=displayBanner(); return
rue”
onUnload="window.status="'"'">

As soon as the Web page is loaded, the onLoad event handler in the
code above calls displayBanner(), which stuffs the message
“Your message here...” in the status line. After a brief pause,
displayBanner() calls itself — this time shifting the position of
the displayed message slightly. For as long as the page is loaded,
displayBanner() keeps calling itself every so often, shifting the
message position each time so that it appears to the user as
though the message is scrolling.

Use scrolling text sparingly — it can be a good way to draw attention
to something on your page, but misused, it can be very annoying!
Not only do many users find it distracting, but rumors are going
around that over time, scrolling schemes like the preceding one
can cause a user’s browser to slow or crash (depending, of course,
on the version of the browser the user has installed).

Displaying the Contents of Nested Objects

A nested object is one that is contained inside another object. For
example: a document contains a form (which is why you have to
refer to it as document . form), so the form is considered to be a

nested object (it’s nested inside a document).

)

Displaying the Contents of Nested Objects

You can create your own nested objects. But what if you nest
objects a couple of levels deep? For debugging, you’ll probably
want to be able to take a look at the contents of an entire object,
including the contents of all the objects it contains (and all the
objects each of them contains, and so on). The following listing
contains some example code that shows you how to inspect the
contents of nested objects.

var displayString = ""
function bu11dD1sp1ay(1nput0bJect
inputObjectName) {
// These two Tines set typeOfObject to the text
// representation of inputObject
var typeOfObject = ""
typeOfObject += inputObject

if (typeOfObject.substring(l,7) != "object") {
// the object is a plain old field
displayString += "\n" + inputObject + "="

} + inputObjectName + "\n"

else {
// the object contains other objects
displayString += "Displaying object " +
1npu$0bject
+ " n "

for (var eachProperty in inputObject) {
var nestedObjectName = ""
nestedObjectName += inputObject[eachProperty]
var nestedObject = inputObject[eachProperty]

displayString += eachProperty + "=" +
nestedObjectName + "\n"

if (nestedObjectName.substring(l,7)

"object") {

// the object contains still MORE objects

// so call this method again (this is
called

// "recursion")

buildDisplay(nestedObject,
nesfedObjectName)

}
}
}

How does this code snippet work? Well, assume that you call
buildDisplay() with an object called recipeBook, which is filled
with three recipes. Each recipe, in turn, contains a name and a list
of ingredients. The buildDisplay() function in the preceding
example walks through the nested objects and displays the field
values each contains, like this:

|

L

L

e

-
L
f
f—

|

!

1]
H

Formatting Money Fields |

Displaying object recipeBook
Displaying object recipe

name = chocolate cake

Displaying object 11stOfIngred1ents
ingredientOne = flour
ingredientTwo = sugar
ingredientThree = eggs
ingredientFour = cocoa

Displaying object recipe

name = white cake

Displaying object 1istOfIngredients
ingredientOne = flour
ingredientTwo = sugar
ingredientThree = eggs
ingredientFour = vanilla

Displaying object recipe

name = rum cake

Displaying object 1istOflIngredients
ingredientOne = flour
ingredientTwo = sugar
ingredientThree = eggs
ingredientFour = rum extract

Formatting Money Fields

SoMPe

r
F..;

It's entirely possible that you may want your Web pages to display
money values, and nothing looks tackier than displaying a money
value as "123.44444400" (which is what JavaScript does when
it’s left to its own devices). Fortunately, you have a choice — you
can use the functions in the following code listing to validate and
format any input field you want to constrain to money values.

“ function scrubData(inputValue) {

// This function deletes digits that aren't
numbers

// or periods. If a non-money-based digit is

/4 qncountered (something other than a "$", a

// or a space) an error is displayed.
var returnValue = ""
for (var i=0; i<inputValue.length;
var digit = inputValue.charAt(i)
if (parseFloat(digit) || digit == "."
digit == "0") {
// digit is a number or period, so keep it

i) |

returnValue += digit
else {

if (digit !I= " " && digit !I= "$" && digit I=
ll,ll) .

// something weird encountered
(continued)

Formatting Money Fields

(continued)
alert("Please enter a non-zero numeric
value.")
break

}
}

return returnValue

function asMoney(inputValue) {
// First, make sure that input value is “"clean"
var scrubValue = scrubData(inputValue)

// Declare some temporary variables

var returnString = ""

var tempNumber = 0

var tempString = ""

tempNumber = Math.round(scrubValue * 100)

// Manipulate the number so we know what we're
// dealing with
if (tempNumber < 10) {

tempString = "00" + tempNumber

}
else if (tempNumber < 100) {
| tempString = "0" + tempNumber

else {
tempString = "" + tempNumber

if (tempString.length > 9) {
alert("Sorry, can't process numbers > one
million.")
return scrubValue

// This next section builds the return string

!/ b%hstart1ng with a dollar sign, then breaking
up e

// number into sections, then placing commas and

// periods between the sections as appropriate.

returnString = "$"

if (tempString.length > 5) {
// Need to add at least one comma
if (tempString.length == 6) {
returnString += tempString.substring(0,1) +
" " +

' tempString.substring(l,tempString.length-2)

else if (tempSthing.]ength ==7) {
returnString += tempString.substring(0,2) +
"o

tempString.substring(2,tempString.length-2)

," i
_— ”
-

Formatting Money Fields |

else if (tempString.length == 8) {
returnString += tempString.substring(0,3) +
" " +

’ tempString.substring(3,tempString.length-2)

else if (tempString.length == 9) {
// Need to add two commas
returnString += tempString.substring(0,1) +
L +

tempString.substring(l,4) + "," +
tempString.substring(4,tempString.length-2)

else { // No commas necessary
returnString = "$" +
tempString.substring(0, (tempString.length-2))

}
// add in the cents
returnString += "." +
tempString.substring((tempString.length -
2),tempString.length)

// Return the newly formatted string back
// to the caller
| return returnString

Enter a number and click anywhere else on the page.
You can also use the following symbols if you
want: $, .

CINPUT TYPE="text" NAME="desiredSalary" SIZE=15

onRlur="document .myForm.desiredSalary.value =
asMoney(this.value)">

Here's what happens in the code above when a user types a
number (say, 66666) into the desiredSalary field and then clicks
elsewhere, thus blurring the field:

4+ asMoney () first calls scrubValue() to remove any spaces,
dollar signs, commas, or periods typed in (if a user has typed
in some character values, an error is displayed on-screen).

4 asMoney () then adds in money punctuation by counting
backwards. Two spaces back and it adds a decimal point;
three spaces back and it adds a comma; finally, it tacks a
dollar sign on the front.

4 onBlur assigns the desiredSalary field the newly format-
ted value.

The result? Instead of the 66666 originally typed into the field, the
value of the field post-event handler will be $666.66.

Getting Started with a Bare-Bones HTML Template

Getting Started with a Bare-Bones
HTML Template

For a jump-start on your very first JavaScript-enabled Web page,
try this template.

M <HTML> -
<HEAD>LTITLE>Your Title Goes Herel/TITLE>

<SCRIPT LANGUAGE="JavaScript">
I

/] Put your JavaScript statements here
[lo==>
</SCRIPT>

</HEAD>

<BODY>

<FORM NAME="myForm">

K<I- This is an HTML comment. You can use this

commenting convention anywhere in your HTML file

except between a set of SCRIPT tags. And by the
way,

don't put angle brackets inside these comments if
you

can help it — doing so confuses the HTML inter-
preter.

</FORM>
</BODY>

</HTML>

Hiding JavaScript Source Code from Users

Two different scenarios exist when hiding your JavaScript
source code which might make sense. One scenario is hiding your
source from users running JavaScript-enabled Web browsers. At
present, it’s rare that folks hide their source code from each other
using this mechanism. After all, as you probably know, the legacy
of the Internet is a spirit of sharing and open exchange. Still, if you
want to do it, you can do so by following the example in the
following section.

The second scenario, hiding your JavaScript source from users
running browsers that can’t interpret your scripting code anyway,
is always a good idea.

i
i

i
i

-

[
|

"
i

R i

"y

Hiding JavaScript Source Code from Users

£

@%
¥

TP

ELLUD

D

®)

From JavaScript-enabled browsers

When you create a JavaScript-enabled Web page and install it on a
Web server, folks all across the world can get access to your
HTML/JavaScript source. How? The same way you get access to
their source code — by choosing View>Document Source (in
Netscape Navigator) or View=>Source (in Internet Explorer).

If you want to nip this kind of information-sharing, tree-hugging
free-for-all in the bud, separate your JavaScript statements from
the rest of your HTML statements and put them in a separate file
with a .js filename extension. Then, in the <SCRIPT>. ..

</SCRIPT> tag pair, specify the name of the source file, like this:

<SCRIPT LANGUAGE="JavaScript"
SRC="http://www.mydomain.com/myscript.js">
</SCRIPT>

Besides hiding your JavaScript source from prying eyes, bundling
related JavaScript functions into one file makes it easier for you to
reuse those functions in multiple Web pages. Instead of having to
copy the function definitions into every HTML file in which you
want to use the functions, all you have to do is reference the .js file
in your Web pages, as shown above!

If you want to test this code with a file on your local machine, you
can. Just set the SRC attribute equal to the name of your
JavaScript file (for example, SRC="mySwel1Functions.js") and
put that file in the same directory as your HTML file.

At the time of this writing, the SRC attribute is supported only by
Navigator 3.0.

From non-JavaScript-enabled browsers

Users with non-JavaScript-enabled browsers who attempt to load
your JavaScript-enabled Web page will be subjected to a frightfully
ugly display: your JavaScript source code! (Since their browsers
can’t interpret JavaScript source code, the browsers assume it's
text that’s meant to be presented on-screen.) To keep this from
happening (without affecting users running Navigator or Internet
Explorer), all you have to do is add special comment characters
just below the beginning <SCRIPT> tag and just above the ending
<SCRIPT> tag, like so:

<SCRIPT LANGUAGE="JavaScript">
<P--
function someFunction() {

}

(continued)

Interacting with Cookies

(continued)
function someOtherFunction() {

}
I ==>
</SCRIPT>

As you can see in the preceding code snippet, the comments must
be placed just inside the <SCRIPT>...</SCRIPT> tags. Also,
note that these are special comments; they're neither standard
HTML (which look like this: <!- ->) nor standard JavaScript
comments (which look like this: //).

Interacting with Cookies

A cookie is a chunk of browser-related (technically, client-related)
information that a program on a Web server can store on the client
machine. Once a cookie has been stored on a client, the next time
the same server and client communicate, the server can take a
look at the stored cookie and make some decisions based on it —
for example, what to display to a client user and how best to
display it.

The following example gives you a taste of the kind of application
that cookies can help you build. It’s the Netscape PowerStart
application, an application that enables users to create their own
custom Web pages. PowerStart uses a JavaScript-enabled Web
page, which displays a menu that offers all kinds of choices
regarding Web-page color, graphics, layout, and content. Users
decide which of these features they want, and when they are
finished making their decisions, they click on the Build button,
which saves their preferences on their machines.

After that, each time that a user selects the MyPage URL from the
Netscape home page, the locally stored preferences in the file
cookies.txt are extracted and used to dynamically create a custom
Web page. Check out the following code listing (borrowed from
the Netscape PowerStart Web page) to get a peek at how cookie-
JavaScript interaction is handled:

function SetCookie (name, thevalue) {

/7 what could be simpler?
document.cookie = name + ' =

' + thevalue + ';

e oy W W T W Wy S TR O WY W AR ew e

t
i

I

d e

Loading and Running a JavaScript Script

RN/,
— oM 6',

function resetall () {
var warning = 'Sure you want to start over?
You' +
br() + 'will lose all of your custom set-
tings.'

i%.(confirm(warhing)) { .
bé}ent.SetCookie('pl'. 'blank")

parent.SetCookie('note', 'Reminder:
t?is page to your bookmarks list.')

Add

}

CINPUT TYPE="button" NAME="reset" VALUE=" Start
Over " onClick="resetall();">
</HTML>

When a user loads the PowerStart page, customizes her home
page, and then clicks the Start Over button on the left-hand frame,
resetall() is called. The statements inside resetA11 () call
SetCookie() to “blank out” the data stored in the cookie, so the
user can start again fresh.

To confirm that these things are really taking place, I encourage
you to load PowerStart at URL http://personal.netscape.com
/custom/modify.htm] and scroll to the very bottom of the left-
hand frame, where you’ll see the “Start Over” button. Customize
your personal Web page first, then click on Start Over and see
what happens!

At the time of this writing, client-side cookie support isn’t provided
in Internet Explorer 3.0.

71 Loading and Running a JavaScript Script

To load and run JavaScript scripts, all you have to do is load a Web
page that contains embedded JavaScript statements. When you
interact with the loaded page (click on a button, type in some text,
that kind of thing), your browser’s built-in JavaScript interpreter
recognizes the JavaScript statements and performs them for you
automatically. Currently, only Netscape Navigator and Microsoft
Internet Explorer support JavaScript.

There’s a slight difference between loading a JavaScript-enabled Web
page that’s on your local machine and one that’s on a Web server.

Navigator Internet Explorer
To load a file from your machine: File=>QOpen File File>0pen
To load a file from a Web server: Filec>Open Location Files>Open

| Looking at JavaScript Source Code

Looking at JavaScript Source Code

One of the best things about learning JavaScript is that when you
see a really cool script, you can immediately take a behind-the-scenes
look at the JavaScript and HTML code responsible. Here’s how:

+ If you're running Navigator and have loaded an interesting
Web page, choose Views>Document Source. If the page
contains multiple frames, you can also click on a particular
frame and select View=>Frame Source to see just the code for
that frame.

4+ If you're running Internet Explorer, choose View=>Source to
see a Web page’s source code.

Making an Embedded Image
Respond to User Events

RN/
WM,

Ever wondered how folks created those really cool clickable maps?
Well, here’s the secret!

<MAP NAME="thistleMap">

<AREA NAME="leftHalf" COORDS="0,0,150,300"
HREF="javascript:displayMessage()"

onMouseOver="self.status="Left side of the pic-
ture'; return true"

onMouseQut="self.status=""'; return true">

<AREA NAME="rightHalf" COORDS="0,0,600,600"
HREF="javascript:displayMessage2()"
onMouseOver="self.status='Right side of the pic-
ture'; return true" :
onMouseQut="self.status="";

</MAP>

<IMG NAME="currentImage"

SRC="1images/thistle.gif" ALIGN="MIDDLE"
ALT="[Scottish thistles]"

USEMAP="#thistleMap">

return true">

This code snippet produces an image that displays the text “Right
side of the picture” in the status line when the user moves the
mouse over the right half of the image, and displays the text “Left
side of the picture” when the user (you guessed it) moves the
mouse over the left half of the image.

At the time of this writing, this approach works best in Navigator
3.0. (The preceding code, interpreted by Internet Explorer 3.0,
displays Shortcut to javascript:displayMessage inthe
status bar when a user moves a mouse over the left half of the image.)

1
1
1
1

B i
i

] Providing Feedback to Users with Pop-Up Messages

Making Your Script Compatible with
Non-JavaScript-Enabled Browsers

SAMALe

The quickest, lowest-common-denominator way to make your
scripts presentable to non-JavaScript-enabled browsers is to
follow the example in the section “Hiding JavaScript Source Code
from Users” earlier in this part. The approach you'll find there
ensures that browsers that can’t interpret your JavaScript source
code at least won’t assume the source code is text and splash it all
over the page for the user to see.

A more comprehensive solution is to use navigator properties to
determine what brand and version of browser a user is using to
load your Web page right away, before you display anything. After
you know what you're dealing with, you can create two different
HTML files and present the appropriate version for each kind of
browser — JavaScript-friendly and non-JavaScript-friendly. More
work? Absolutely. Is it worth it? It may be, if you want to dazzle the
sizable portion of the global Web audience that for some reason or
other hasn’t yet gotten around to upgrading to a JavaScript-
enabled Web browser!

if !(navigator.appName == "Netscape" &&
navigator.appVersion.substring(0,1) == 3) {
// The user isn't running Netscape Navigator 3.x
// so they might not be able to see the fancy
]//dstuff. If you want, you can automatically
oa
%/ a plain-vanilla version of your Web page for
them.

Providing Feedback to Users
with Pop-Up Messages

Pop-up messages are a great way to call a user’s attention to
something (like, they entered the wrong value for a field). Gener-
ally, you'll want to assign one of these messages to the event
handler of some input element — a button’s onC11 ck event
handler, for example. Be aware, though, that pop-up messages are
fairly intrusive; users have to stop everything and deal with them
before they can continue with what they were doing.

JavaScript contains three different kinds of pop-up messages,
which you can create using three different window methods:
alert(),confirm(),and prompt().

Saving JavaScript Files

Method Tells the User... Input Parameter (s) Return Ualue
alert() Hey! Something just happened! string to display none
confirm() Yesorno? Answer me! string to display true (OK)
false (Cancel)
prompt() Youneed to enter a value. string to display user-entered
default value to value, if any;
display (optional)_ else null
Following are examples for each method.
PR alert("Please enter your phone number in the

following format: (123) 456-7890")

var answer = confirm("Do you really want to order
5,000 toenail clippers?")

var numberOfOrders = prompt("Enter the number of
orders you want to place", 1)

Saving JavaScript Files

When you find a really inspirational JavaScript-enabled Web page,
chances are that you may want to save it so that you can study it,
print it out, frame it, or maybe even (gasp!) borrow portions of it
for your own Web page. You've got a choice of two formats when
you save JavaScript-enabled HTML files:

4+ HTML source code
+ WYSIWYG (what you see is what you get, or plain old text)

Saving JavaScript files as HTML source code

4 If you're running Navigator 3.0, you can save HTML source by
choosing File>Save As>Save as typec>HTML Files.

4+ In Internet Explorer, it’s almost the same: choose File>Save As
Filec>Save as typecoHTML (*.htm, * html).

Whichever browser you're running, just be sure that the file name
you create.ends with .html or .htm.

Saving JavaScript files as text

4+ If you're running Navigator 3.0, you can save the text of a Web
page by choosing Filem>Save As=>Save as typewPlain Text
(*.txt).

4 In Internet Explorer, it’s almost the same: choose File>Save As
File>Save as typeroPlain Text (*.txt).

Validating User Input

Choose a file name that ends with .txt, and you’re home free.

Using JavaScript to Calculate
Values for HTML Tags

Navigator 3.0 gives you the ability to calculate values using
JavaScript statements and then assign these calculated values
to HTML tag attributes. The following sample code affects the
<BODY>...</BODY> tag pair, but you can assign a calculated
value to any HTML attribute.

function getRandomColor() {
var today = new Date()
var x = today.getSeconds()
if (x < 5) { return "maroon" }
else if (x > 5 && x < 10) { return "yellow" }
else if (x > 10 && x < 183 % return "green" }

else if (x > 15 && x < 2 return
"antiquewhite")

else if (x > 20 && x < 25) { return "azure" }
else if (x > 25 && x < 30) { return "chocolate" }
else if (x > 35 && x < 40) { return "red" }

else if (x > 40 && x < 45) { return "lavender" }
else if (x > 45 && x < 50) { return

"cornflowerblue"}
else if (x > 50 & & x > 55) { return "beige"}

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR="&{getRandomColor()};">

Each time you load a Web page that contains the preceding
example code, you see a different background color. What fun!

Remember: When you assign a JavaScript statement to an HTML
attribute, you need to remember to surround the JavaScript
statement with an ampersand and opening curly brace (&{) in
front and a closing curly brace and a semicolon (} ;) bringing up
the rear.

Validating User Input

You can take two different approaches to validate the input your
users type into your HTML form. One approach is to take a look at
the entire form input in one fell swoop, right before you submit it
to a CGI program. Another approach is to examine each input field
as soon as the user finishes with it (to see immediately if it’s up to
snuff). These approaches aren’t mutually exclusive — in fact, you
probably want to use both.

Validating User Input

Validating before the form is submitted

The onSubmit event handler of the form object is a good place to
do what is called consistency editing, which is validating that the
input a user types in is valid (taken as a whole). For example, a
user may specify himself as “Single” in one field and enter a value
for “Spouse’s name” in another field. Clearly, both values can’t be
correct, because they contradict each other. It’s this type of
inconsistency between values that you can check right before you
pack up your form data and ship it off to a CGI program.

L function doeskExist(inputValue) {
var aCharExists=0
if (inputValue) {
for (var i=0; i<inputValue.length; i++) {
if (inputValue.charAt(i) != " ") {
} aCharkExists =1

}

}
if (laCharExists) {
return 0

else {
return 1

}

function editFormForConsistency() {
if ((document.myForm.single.value == "Y" &&
doesExist
(documfrt.myForm.spouseName.va]ue))
(document.myForm.single.value == "N" &&
!doesExist(document.myForm.spouseName.value)))

} return false
else {
return true

}

<FORM NAME="myForm"
onSubmit="return editFormForConsistency()">

Are you single? (Y or N)

CINPUT TYPE="text" NAME="single" VALUE="Y" SIZE=1>

Name of spouse: <INPUT TYPE="text"
NAME="spouseName">

INPUT TYPE="submit" VALUE="Submit!">

Validating User Input

)

Validating one field at a time

Validating one field at a time is sometimes called field-level
validation, and it’s the quickest way to give users feedback on
their input. This section contains examples of the most common
field-level validation criteria.

Existence:

One way to make sure that a user fills in a field is to examine the
value of the field as soon as the user finishes with it to make sure
that a value exists. Here’s how:

function doesExist(inputValue, inputExpected) {
var aCharExists=0
if (inputValue) {
for (var i=0; i<inputValue.length; i++) {
if (inputValue.charAt(i) I= " ") {
} aCharExists =1

}

}
if (laCharExists) {
alert("Please enter a

+ inputExpected)

}
}

Company name:

<INPUT TYPE="text" NAME="companyName" VALUE=""
SIZE=35

onBlur="doeskExist(this.value, 'company name')">

When a user clicks on the text field called companyName and then
clicks somewhere else on the page, this code snippet springs into
action. First, it determines whether the input value exists at all. If
it does, the code loops through the input value, one character at a
time, to make sure that something other than all spaces were
entered. (Technically, a bunch of spaces in a row is an “existing”
value to JavaScript; humans, however, generally have other ideas!)
If no nonspace characters were typed in, this function triggers a
pop-up message to alert the user.

Numeric:

Sometimes, you may want to make sure that a user supplies a
numeric value for a field (an age field, perhaps, or a price field).
Depending on your needs, the JavaScript functions parselnt,
parseFloat, and isNaN (all of which are discussed at length in
Part V) may be just what the doctor ordered.

These functions, however, return the computer equivalent of a
thumbs-up if the first digit is numeric, regardless of what the user
types in after that. So, if a user types in 8abed, parselnt,

)

Validating User Input

parsefloat, and isNaN would give that value their blessing! If
you want to do a more thorough validation job, try the function
listed in the following example.

function isANumber(inputValue){
if (!parseFloat(inputValue)) {
alert("Please enter a numeric value.")

else { -
for (var i=0; i<inputValue.length; i++) {
if (inputValue.charAt(i) = " ") {
if(!parseFloat(inputValue.charAt(i)))

alert("Please enter a numeric
value.")
break

}
}

Number of items you wish to purchase:

<INPUT TYPE="text" NAME="numberItems" VALUE=""
SIZE=5

onBlur="isANumber(this.value)">

These JavaScript statements, repeated from the i sANumber ()
function in the code snippet above, cause i sANumber () to ignore
any blank spaces that the user may accidentally type next to a
number. That keeps an error from popping up if a user types in a
space.

if (inputValue.charAt(i) !=" ")
// if we got here, the character's not a space
if (lparseFloat(inputValue.charAt(i))) {
g]ert("P1ease enter a numeric value.")
reak

Conforming to a pattern:

All e-mail addresses follow a common pattern, and it’s conceivable
that you may want to make sure that the address that your user
enters into an e-mail address field is valid. (After all, you may be
relying on the address to send information, an invoice, or what
have you.) Other examples of numbers that have common patterns

are phone numbers, social security numbers, and account numbers.

Here’s how you can go about validating a phone number input
field (you can adapt the code to validate any pattern you want):

by

|

A

Web-Surfing: Creating Hypertext Links

function isAPhoneNumber(inputValue)({
if (inputValue) {
var openParen = inputValue.substring(
var areaCode = inputValue.substring(l
var closeParen = inputValue.substring
var exchange = inputValue.substring(5
var dash = inputValue.substring(8,9)
var line = inputValue.substring(9,13)

if (
(openParen = "(") |
(!isANumber(areaCode)) ||
(closeParen != ")") |
| |
N

0,1)
,4)

(4,5)
,8)

(lisANumber(exchange))
(dash = "-")
(1isANumber(1ine))){
alert("Please enter phone number in
the f$11ow1ng format: (123)456-7890")

}
}

PTease enter your home phone number

in the following format: (123)456-7890
<INPUT TYPE="text" NAME="homePhone" VALUE=""
SIZE=13
onBlur="isAPhoneNumber(this.value)">

You may notice the use of a function called i sANumber () in the
preceding example. It's the same i sANumber () that was designed
in a preceding section to validate numeric fields! Here it does
double-duty, validating the numeric portions of a phone number.
Ah, sweet reuse.

Web-Surfing: Creating Hypertext Links

SAMEL

L2

Hypertext links are what the Web’s all about. This section shows
you how you can use them effectively.

Creating links between Web pages

Linking two Web pages is pretty easy. All you have to do is define a
link with the <A> .. . tag, as shown below. (See also
“Hypertext link” in Part L)

 Netscape's home
page

If you're linking to a specific place on another Web page, called an

anchor, your statement would look more like this:

 A
certain place on Netscape's home page

i
1 .

Web-Surfing: Creating Hypertext Links

i

e To see what anchors are available on other people’s Web pages,
view their HTML source code. To see how to view source code,
see also “Looking at JavaScript Source Code,” earlier in this part.

b
i

Creating links within a single Web page | -

In order to link from one part of a page to another, you need to
define an anchor. An anchor is a piece of text that some other
piece of text (a link) can link to. Here’s an example:
. S , Most of the keywords listed in this appendix mean
P <H1 ><</%EE'\:\I1%%%>>H<O/VI{1 1t>0 Stay Fit in Your 100°s something special to the JavaScript interpreter. The
<H2>Table of Contents</H2> others are reserved for future incorporation; so even
P> - though some of these words aren’t used for anything
_ right now, you still get an error if you use any of the
Chapter 1.
 words in this list to name variables, functions,

Chapter 2.
 ‘ .
<A HREF="JCHAP3"SChapter 3.
 methods, or objects.

<H3>Chapter 1: Aerobic Fitness

-
i

Reserved Words

.
1

i i

</H3>LK/ A
<P>Chapter 1 text would go here, and it might be
several paragraphs (even pages) long. -

 E
<A N6§5="CHAP2"><H3>Chapter 2: Eating Well</H3> ' B
<
_<P>Chaﬁter 2 text would go here. Pretend that .
this chapter is really long. What if someone read !

thr%%gh Chapter 2 and then decided to read Chapter

Unless there was a link back to Chapter 1 (more -
Tikely, a link back to the Table of Contents) it
would be hard for the user to scroll to the
correct starting point.

Back to Table of Contents

<P>

<H3>Chapter 3: Stress Reduction
through Pet Ownership</H3>

<P>Chapter 3 text would go here. When you're

designing multiple Web pages, consider putting a

button at the bottom of each page that lets the

user pop back to the first page (your <I>home</I>

4

page).

Back to Table of Contents

\"L ‘—'L
"

-
3

Lots of anchors are being created in the preceding code example:
TOC, CHAPL, CHAP?2, and CHAP3. Notice how anchors are always
referenced with a hash symbol (#) in front of them? The hash
symbol must always be the first character of an anchor name. See
also the “Hypertext anchor” section in Part L.

[
'}

Jw
i i

Reserved Words

JavaScript reserved words

abstract
boolean
break
byte
case
catch
char
class
const
continue
default
do
double
else
extends
false
final
finally
float
for
function
goto

if
implements
import
in

instanceof

int
interface
long
native
new

nutl
package
private
protected
pubTic
return
short
static
super
switch
synchronized
this
throw
throws
transient
true

try

var

void
while
with

b

]
i

L)

i e B e = e SR o T .
|

/

|

‘h | ‘

!
{

|
" \

i

o

hild

Color Values

Table B-1 contains an alphabetical listing of all of the
predefined colors available to you in JavaScript. As
you look through the list, remember that setting a
form element’s color to the string “aliceblue” is
equivalent to setting it equal to the RGB triplet value
“FOF8FF” — the choice of format is yours.

You can create your own custom colors by stringing
together your very own red, green, and blue hexadeci-
mal triplets. Here’s how: In the hexadecimal scheme of
things, the lowest two-digit number you can have is 00
(or 0 in decimal), the highest is FF (or 255 in decimal),
and the progression for each digit looks like this:

0, 1, 2, 3, 4, 5,6, 7,8, 9, A, B, C, D,
E. F

Start with a color from the list in Table B-1 that’s close
to what you want — for instance, salmon. If you're
looking for something with a little more red in it,
increase the red portion of the value (FA) to FB. If
you're looking for a shade that’s just a touch less blue
reduce the blue portion of the value (72) to, say, 66.
You get the idea.

Color Values

Table B-1 Predefined Color Values
Color Red Green Blue RGB Triplet
aliceblue FO F8 FF FOF8FF
antiquewhite FA EB D7 FAEBD7
aqua 00 FF FF OOFFFF
aguamarine 7F FF D4 TFFFD4
azure Fo FF FF FOFFFF
beige F5 F5 DC F5F5DC
bisque FF E4 C4 FFE4C4
black 00 00 00 000000
blanchedalmond FF EB CD FFEBCD
blue 00 00 FF 0000FF
blueviolet 8A 2B E2 8A2BE2
brown A5 2A 2A A52A2A
burlywood DE B8 87 DEB887
cadetblue 5F 9E A0 5F9EAQ
chartreuse 7F FF 00 TFFF00
chocolate D2 69 1E D2691E
coral FF TF 50 FF7F50
cornflowerblue 64 95 ED 6495ED
cornsilk FF F8 DC FFF8DC
crimson DC 14 3C DC143C
cyan 00 FF FF COFFFF
darkblue 00 00 8B 00008B
darkcyan 00 8B 8B 008B8B
darkgoldenrod B8 86 0B B8860B
darkgray A9 A9 A9 A9A9A9
darkgreen 00 64 00 006400
darkkhaki BD B7 6B BDB76B
darkmagenta 88 00 8B 8B008B
darkolivegreen 55 6B 2F 556B2F
darkorange FF 8C 00 FF8Coo
darkorchid 99 32 cC 9932CC
darkred 8B 00 00 8B0000
darksalmon E9 96 71A E9967A
darkseagreen 8F BC 8F 8FBCSF

hd e

o]
bed

f

i J

i

Color Values

Color Red Green Blue RGB Triplet
darkslateblue 48 3D 8B 483D8B
darkslategray 2F 4F 4F 2F4F4F
darkturquoise 00 CE D1 00CED1
darkviolet 94 00 D3 9400D3
deeppink FF 14 93 FF1493
deepskyblue 00 BF FF O0BFFF
dimgray 69 69 69 696969
dodgerblue 1E 90 FF 1E90FF
firebrick B2 22 22 B22222
floralwhite FF FA FO FFFAFO
forestgreen 22 8B 22 228822
fuchsia FF 0o FF FFOOFF
gainsboro DC DC DC DCDCDC
ghostwhite F8 F8 FF F8F8FF
gold FF D7 00 FFD700
goldenrod DA A5 20 DAA520
gray 80 80 80 808080
green 00 80 00 008000
greenyeliow AD FF 2F ADFF2F
honeydew FO FF FO FOFFFO
hotpink FF 69 B4 FF69B4
indianred CD 5C 5C CD5C5C
indigo 4B 00 82 4B0082
ivory FF FF FO FFFFFO
khaki FO E6 8C FOE68C
lavender E6 E6 FA EGEGFA
lavenderblush FF 1] F5 FFFOF5
lawngreen 1€ FC 00 7CFC00
lemonchiffon FF FA cD FFFACD
lightblue AD D8 E6 ADDSEG
lightcoral FO 80 80 F08080
lightcyan EO FF FF EOFFFF
lightgoldenrodyellow FA FA D2 FAFAD2
lightgreen 90 EE 90 90EES0
lightgrey D3 D3 D3 D3D3D3
(continued)

-
Color Values o Color Values

! i
Color Red Green Blue RGB Triplet Color Red Green Blue RGB Triplet
lightpink FF B6 C1 FFB6C1 ') paleturquoise AF EE EE AFEEEE
lightsalmon FF A0 7A FFAQ7A T palevioletred DB 70 93 DB7093
lightseagreen 20 B2 AA 20BZAA | papayawhip FF EF D5 FFEFD5
lightskyblue 87 CE FA 87CEFA '] peachpuff FF DA B9 FFDABY
lightslategray 71 88 99 778899 B peru CD 85 3F CD853F
lightsteelblue BO C4 DE BOC4DE pink FF co CB FFCOCB
lightyellow FF FF EO FFFFEQ .] plum DD AD DD DDAODD
lime 00 FF 00 00FF00 - powderblue BO EO E6 BOEOE6
limegreen 32 CD 32 32CD32 - purple 80 00 80 800080
linen FA FO E6 FAFOE6 E red FF 00 00 FF0000
magenta FF 00 FF FFOOFF - rosybrown BC 8F 8F BC8F8F
maroon 80 00 00 800000 - royalblue 4 69 E1 4169E1
mediumaquamarine 66 CD AA 66CDAA E o saddlebrown 8B 45 13 8B4513
mediumblue 00 00 CD 0000CD ’ salmon FA 80 72 FAB072
mediumorchid BA 55 D3 BA55D3 , sandybrown F4 A4 60 F4A460
mediumpurple 93 70 DB 93700B E] seagreen 2E 8B 57 2E8B57
mediumseagreen 3c B3 71 3CB371 ’ seashell FF F5 EE FFF5EE
mediumslateblue 7B 68 EE 7B68EE : sienna AD 52 2D A0522D
mediumspringgreen’ 00 FA 9A 00FA9A B] silver co co co cococo
mediumturquoise 48 D1 cC 48D1CC skyblue 87 CE EB 87CEEB
mediumvioletred C7 15 85 C71585 B ' slateblue 6A 5A CD 6ABACD
midnightbiue 19 19 70 191970 ' »\] slategray 70 80 90 708090
mintcream F5 FF FA F5FFFA snow FF FA FA FFFAFA
mistyrose FF B4 El FFE4E1 ! .] springgreen 00 FF T OOFFTF
moccasin FF E4 B5 FFE4B5 2 steelblue 46 82 B4 4682B4
navajowhite FF DE AD FFDEAD tan D2 B4 8C D2B48C
navy 00 00 80 000080 . “’] teal 00 80 80 008080
oldlace FD F5 E6 FDF5E6 ' thistle D8 BF D8 D8BFD8
olive 80 80 00 808000 | tomato FF 63 47 FF6347
olivedrab 668 8 23 6BBEZ3 l] furquoise 0 B0 D0 40EODO
orange FF A5 00 FFA500 violet EE 82 EE EE82EE
orangered FF 45 00 FF4500 L wheat F5 DE B3 F5DEB3
orchid DA 70 D6 DA70D6 !] white FF FF FF FFFFFF
palegoldenrod EE E8 AA EEEBAA whitesmoke F5 F5 F5 F5F5F5
palegreen 98 FB 98 98FB98 . - yellow FF FF 00 FFFFO0

!] yeliowgreen 9A cD 32 9ACD32

ﬁ‘ -
i

JavaScript For Dummies Quick Reference

1
(

i
!
L i

Techie Talk

“uy algorithm: An algorithm is a set of instructions designed to
solve a problem. An algorithm can be expressed in English or
some other human language, or translated into a computer
language such as JavaScript.

i 2

N

applet: An applet is a Java program that’s specifically
designed to be integrated into an HTML file (that is, a Web

- page). On the other hand, Java programs designed to run as
stand-alone applications, such as Hot Java, are called — well,
they’re just called Java programs.

-
array: An array is an indexed (or numbered) list of elements.
- You can create arrays of numbers, strings, and objects. You
" access an array’s elements by using their indexes. For
- example, if you have an array called desserts and you want

to access the first element, you type desserts [0]; the
second element, desserts[1]; the third element, des-
serts[2], and so on. The built-in arrays to which you have
access in JavaScript are anchors, elements, forms,

- frames, 1inks, and options.

e blur: When you've clicked with your mouse pointer on a
form element, that element is said to have focus. When
you then click somewhere else on the Web page, that
first element is said to have lost focus (or blurred). In
JavaScript, some form elements have an onBlur event
handler associated with them, which you can use to
trigger some function when the element blurs. See focus.

Y

Boolean: The Boolean datatype (sometimes called logical
type) is a data type that consists of only two possible
values: true, which is sometimes represented as 1, and
false, which is sometimes represented as 0.

CGI: CGI (Component Gateway Interface) is a protocol that

o allows Web servers and Web clients to pass information
back and forth to each other. CGI programs are typically
written in either Perl or C languages and reside on Web
servers. A client-side Web page automatically submits a form
to a server-side CGI program when a user clicks on a Submit
button. The CGI program is specified as part of the Web
page’s <FORM> declaration.

Techie Talk

client: A client is a software application
that makes a request, usually for data,
from another software application.
Although technically no law says that
they have to be, client software and
server software are usually located on
different machines. See Web client.

content: A Web page’s content is the
information that the page contains,
whatever that may be — an online
magazine article, a product advertise-
ment, a JavaScript example, or what have
you. On the Web, authors are referred to
as “content providers.”

cookie: A cookie is a piece of information
about a client process (such as a Web
browser session) that CGI server
programs can store on the client’s
machine. Only the server that creates the
cookie and the client that stores it have
access to the information stored in the
cookie. Cookies are saved in a file called
cookies.txt.

daemon: A daemon is a program that
runs in the background on a server
machine, waiting for requests. The
HyperText Transfer Protocol Daemon, or
httpd, must be running on a Web server
for any Web clients to be able to interact
with the server.

focus: When you put your cursor on a
form element and click on it, the element
becomes active and lets you interact with
it. That element is now said to have focus.
In JavaScript, some form elements have
an onFocus event handler associated
with them, which you can use to trigger
some function when the element receives
focus. See blur.

HTML: HTML stands for HyperText
Markup Language. HTML is a standard
language that contains a set of conventions
(called tags) that you can use to specify
the appearance you want for each
particular part of your Web document.
HTML is supported by all Web browsers,
including Navigator and Internet Explorer.
All Web pages are written in HTML;
some Web pages also include HTML
extensions, like the <SCRIPT>., ..
</SCRIPT> tag pair that enables
JavaScript script embedding.

index: An index is a number assigned to
each element in an array. The first index
of an array always starts with 0 and then
increases by one, like so: 0, 1, 2, 3, 4, and
SO on.

inheritance: Inheritance is the ability of
an object-oriented programming language
to create an object by substantially reusing
another object’s characteristics — for
example, the ability to create an object
called Part-Time Employee from an
object called Employee. JavaScript
doesn’t support inheritance, so it’s not
considered a true object-oriented
language (it is considered an object-
based language, though).

Internet: The Internet, or 'Net, is a
worldwide computer network made up of
hardware, software, and communications
lines. Different protocols, like http and
news, allow users to peek at content on
the Internet in different ways.

interpreter: An interpreter is a piece of
software that transforms human-readable
source code into machine-readable
language. Every JavaScript-enabled Web
browser contains a JavaScript interpreter.

Java: Java is an object-oriented program-
ming language designed by Sun
Microsystems. Java is similar in some
ways to C++. Java was specifically
designed to be the ultimate Internet
application development language, so it
includes built-in features like cross-
platform capability and security. You can
integrate Java applets into Web pages
and, with Netscape Navigator 3.0, you can
integrate Java applets into JavaScript
scripts.

JavaScript: JavaScript is a C-like scripting
language developed by Netscape
Communications. JavaScript, imple-
mented as an extension to HTML, makes
it possible for developers to create Web
pages that respond to user events and
perform client-side calculations. At the
time of this writing, Netscape Navigator
and Microsoft Internet Explorer are the
only generally available browsers that
support JavaScript.

LiveConnect: Implemented in Netscape
Navigator Version 3.0, LiveConnect is the

|

L
1
h

T
-

-

e Bd Bl e B

Bt Bt

)
R

P

Techie Talk

technology from Netscape Communica-
tions that allows JavaScript statements to
interact directly with Java applets and
Netscape plug-ins.

LiveWire: LiveWire (and LiveWire Pro)
are server-side integrated tool suites
from Netscape Communications that
allow users to create, maintain, and
manage Web sites. Both LiveWire and
LiveWire Pro support compiled versions
of JavaScript.

method: A method, sometimes called
a member function, is a function that is
defined specifically for a particular
object and operates only on that
object’s data. Different objects can
have methods of the same name (for
example, document.close() and
window.close()).

MIME type: MIME stands for Multipurpose
Internet Mail Extensions. MIME types are
standard types of multimedia files that
can be passed around the Web. Some
examples are audio/x-wav, image/
jpeg,and text/html.

object: In object-oriented programming
languages (or object-based languages like
JavaScript), an object is a complex data
type that represents a real-world person,
place, thing, or idea. Objects can be built-
in, like the button, check box, document,
radio, and window objects, or they can be
custom-defined by a programmer/
JavaScript author.

polymorphism: Polymorphism, along
with inheritance, is one of the defining
characteristics of object-oriented
languages. Polymorphism is the ability to
call a method with the same name on
multiple objects (for example,
document.close() and
window.close(), in which the
close() method can be called on both
the document and the window objects).
JavaScript supports polymorphism.

property: A property is a descriptive
characteristic of an object. For example,
a Cat object might logically contain
name, size, color, age, and hadShots
properties, with corresponding property
values of "Inky", "small", "black", “3
months", "yes". All object properties
are accessible via JavaScript statements.

public: The pub1ic keyword is used in
some object-oriented languages to
indicate that a particular property or
method defined in one class can be called
from another class. Public properties and
methods of Java applets can be invoked
directly from JavaScript statements with
Netscape Navigator 3.0.

script: A script is a simple, interpreted
computer program that falls about
midway on the continuum between
command line directives and full-blown
programming languages. JavaScript is an
example of a scripting language.

server: A server is a software application
that answers requests (usually for data)
from other software applications, called
clients. Clients and servers are typically
(but not always) on different machines.
See client and Web server.

source file: A human-readable computer
language file that must be either com-
piled or interpreted in order.to run on a
computer. JavaScript scripts are embed-
ded into HTML source files and are then
interpreted by the HTML interpreter
that’s integrated into every JavaScript-
enabled Web browser. See interpreter.

state: The content of an object at any
point in time is referred to as the object’s
state.

string: A string is a collection of charac-
ters treated as an entity, usually sur-
rounded by either single or double
quotes. The String object is built-in to
JavaScript and contains such methods as
bold() and btink().

substring: A substring is some portion of
a string.

syntax: Syntax refers to the rules of
punctuation and word order of a
language. JavaScript, because it’s
considered a language (a scripting
language), has its own syntax that must
be followed precisely in order to create
working JavaScript scripts.

tag: In HTML, a tag is a keyword (like
KTITLE>, </TITLE>, <BODY>, and </
BODY>) that tells the HTML interpreter
how to interpret and handle a piece of
text. HTML is sometimes referred to as a
tag language.

Techie Talk

L

template: A template is a skeleton file
that contains basic information, as well
as placeholders for customized informa-
tion. Many programmers use templates as
the basis of their source files (including
HTML source files) so that they don’t
have to keep typing in the boring,
essential statements common to every
source file.

this: When encountered within a form
element, this refers to the specific
instance of that form element. It’s a kind
of shorthand that you can use to avoid
typing a very long form element name
over and over.

transaction: A transaction is an instance
of communication between a calling
program and a called program. A
transaction begins when communication
initiates and ends when the communica-
tion ceases. A transaction is sort of like a
conversation between two computer
programs.

URL: A Uniform Resource Locator is a
path name for objects on the Web. For
example, http://www.idgbooks.com
is a URL.

Web: An abbreviation for the World Wide
Web, the Web is a huge conglomeration of
text, image, audio, video, and heaven-
knows-what-other-kinds-of-media,
organized into Web pages that are
scattered all across the planet on
multitudes of Web servers. The Web is
more than just data, though; it’s also the
connections between the data as well as
the software that lets users access the
data.

Web client: A Web client is a computer,
typically a personal computer running
the Macintosh or Windows operating
systems. A Web client has a Web browser
installed and running (like Netscape
Navigator or Internet Explorer).

Web page: A Web page, sometimes
referred to as a Web application, is a file
written in HTML (and possibly HTML
extensions, like JavaScript) that may
display text, sound, graphics, movies,
and interactive forms to any user who
accesses the Web page.

Web server: A Web server is computer,
typically running UNIX. A Web server has
something called httpd (HyperText
Transfer Protocol Daemon) installed and
running on the server. Web servers store
Web pages and CGI programs, which are
accessed and used by Web clients.

Web site: A Web site is a collection of
linked Web pages, produced by the same
individual or company.

wizard: A wizard is a software utility that
greatly speeds the completion of a task. A
wizard questions a user and then
automatically does something based on
the user’s answers. An example of a
wizard is the Netscape Powerstart Setup
page, which lets you choose content and
layout for your very own customized
home page and then constructs the page
for you.

WYSIWYG: What You See Is What You
Get (pronounced “wizzie-wig”).
WYSIWYG HTML editors, such as
Microsoft Internet Assistant, are Web
page editors that let you drag and drop
text to create HTML files instead of
having to type in the HTML tags yourself.

-

- W W
- —

r

r
¥

B
it el el

[

Index

A

<A> tag, 19-21
abs() method, 92
accessing variables, 53
acos() method, 93
ACTION attribute of <FORM> tag, 34
action property, 126
ActiveX component, 15-16, 166-167
addition (+)
JavaScript mathematical operator, 49
JavaScript string operator, 52
addition (+=), JavaScript assignment
operator, 47
Adobe Acrobat plug-in, 33
alert() method, 93, 181-182
algorithm, 197
aliases, associated with objects, 39
ALIGN attribute, value for, 30
ALINK (activated link) color, 164
alinkColor property, 126
alphabetic order, 117
ampersand (&), in search values, 142
anchor() method, 93
anchors
defining, 93
defining with HTML, 19-20
described, 56
in hypertext links, 187, 188
JavaScript syntax, 38
length property, 135-136
names for, 132
and (&&), JavaScript logical operator,
49, 50
animated multicolored bubbles, 30-31
animation files, 165
appCodeName property, 127
append (+=), JavaScript string operator,
52

<APPLET> tag, 29-31
applets
described, 57, 197
embedding in Web pages, 29-31
JavaScript syntax, 38
name property, 138
names of, 168
playing animation, 165
in Web pages, 167-168
applets property, 127
appName property, 127
appVersion property, 127

arc cosine
See acos() method
arc sine
See asin() method
arc tangent
See atan() method
area objects
described, 57-58
properties, 132-134, 140-141, 145
 tag and, 51
JavaScript syntax, 38
event handlers, 158-159
arguments property; 127
Array utility objects
described, 74-75, 197
JavaScript syntax, 39
join() method, 106-107
length property, 135-136
name property, 138
reverse() method, 112
sort() method, 117
asin() method, 94
assignment operators
precedence order, 50
types of, 47-48
atan() method, 94
atan2() method, 94

B

back() method, 94-95

background color, in Web pages, 164

background page color, 11

backslash+double quote (\"), escaping
the quote action, 41

Bare-Bones HTML Template, 10, 18, 176

bgColor property, 128

big() method, 95

blink() method, 95

biur() method, 95-96

blurring, 151, 197

body section, defining with HTML, 11

<BODY> tag, 11-12, 183

bold() method, 96

bookmarking Web pages, 34

Boolean (true or false) data type, syntax, 37

Boolean values, 48, 198

border property, 128

brackets (< >), 6

break keyword, 44

browsers, 177, 181

JavaScript For Dummies Quick Reference

Build button, Netscape PowerStart, 178
buildDisplay() function, 172
built-in functions, 84-87
buttons
click() method, 97
described, 58-59
JavaScript syntax, 38
name property, 138
onClick event handler, 154
syntax for interactive forms, 22
type property, 146
value property, 147

c

calculating values for HTML tags, 183
calling functions, 82
capitalization, 41-42
Cartesian coordinate
See atan2() method
ceil() method, 96
CGI (Common Gateway Interface)
protocol
described, 198
queries and, 142
specifying with ACTION attribute
of <FORM> tag, 34
validating user input, 184
changeText() method, 167
charAt() method, 97
checkboxes
checked property, 128
click() method, 97
defaultChecked property, 129
described, 59
JavaScript syntax, 38
name property, 138
onClick event handler, 154
syntax for interactive forms, 22-23
type property, 146
value property, 147
checked property, 128
clearTimeout() method, 97
See also setTimeout() method
click() method, 92, 97-98
clickable maps, 31-32, 180
client
See Web clients
close (document) method, 98
close (window) method, 98
colon (%), separating hostname and
port, 133
colors
bgColor property, 128
fgColor property, 131
setting in HTML, 11
values, 191-195

vlinkColor property, 148

in Web pages, 164
comma (,) operator, 50
comment characters, special, 177-178
comments

syntax, 18

types of, 42
comparison operators, 48
complete property, 128
conditional expressions, 43, 45
conditional operators, 50
confirm() method, 98-99, 181-182
conforming to a pattern, field-level

validation, 186-187

consistency editing, 184
content providers, 198
continue keyword, 44
cookie property, 129
cookies, 178-179, 198
cos() method, 99

See also sin() method
currency

See money fields
custom colors, 191
custom functions, 88-90
custom messages, in status bar, 159
custom properties

See prototype property

D

daemon, 198
data types, 37, 73, 141

See also names of specific data types
Date utility objects

described, 75-76

JavaScript syntax, 39

parse() method, 110

toGMTString() method, 120

toLocaleString() method, 121
days, specifying, 102, 113-114
debugging objects, 172
defaultChecked property, 129
defaultSelected property, 129
defaultStatus property, 129, 144
defaultValue property, 130
description property, 130

dialog boxes, invoked by onFocus event

handler, 156

displayBanner() function, 171

displayFlag() function, 169

division (/=), JavaScript assignment
operator, 47

division (/), JavaScript mathematical
operator, 49

document objects

alinkColor property, 126

L
— o

i

e b B

J

L

—

)

Index

applets property, 127
cookie property, 129
described, 59-60
embeds Array utility objects, 131
fgColor property, 131
forms array, 132
images array, 134
JavaScript syntax, 38
lastModified property, 134
linkColor property, 136
links array, 136
location property, 137
referrer property, 142
title property, 145
double quote ("), surrounding string
values, 40
double slash (//)
HTML comments, 18
JavaScript comments, 42

E

E property, 130
elements array, 130-131
<EMBED:> tag, 32-33, 168, 169
embeds array, 131
enabledPlugin property, 131
encoding property, 131
ENCTYPE form attribute, 131
endless loop, 156
Envoy document management plug-in,
Tumbleweed Software, 168
equal to (==)
JavaScript comparison operator, 48
JavaScript string operator, 52
equality operators, precedence order, 50
escape() function, 84
escaping quites, 41
Euler’s constant, 99
eval() function, 84-85
event handlers, 149-150
See also names of specific event
handlers; objects
exceptions to rules, continue keyword, 44
existence, field-level validation, 185
exp() method, 99

F

fgColor property, 131
field-level validation, 151-152, 185, 186, 187
file extensions, 144
filename property, 132
fileUpload objects
defining for interactive forms, 23
described, 60-61
JavaScript syntax, 38
name property, 138

type property, 146
value property, 147
fixed() method, 99-100
floating-point numbers, 85-86
floor() method, 100
focus, 198
focus() method, 100
fontcolor() method, 101, 164
fonts
color, 101
fixed-pitch, 99-100
italics, 106
size, 95, 101
fontsize() method, 101
for...in loops, 46
for loops, 43, 45-46
foreground (text) color, 11
form object, 184
<FORM> tag
ACTION attribute, 34
defining, 12-13
forms
See also interactive forms
defining with HTML, 12-13
described, 61
elements, 15-21
elements array, 130-131
encoding property, 131
JavaScript syntax, 38
method property, 137
onReset event handler, 160
onSubmit event handler, 161
reset() method, 112
submit() method, 119
target property, 145
forms array, 132
forward() method, 101-102
frame objects
clearTimeout() method, 97
creating, 18-19
described, 61-62
frames array, 132
JavaScript syntax, 39
name property, 138
onBlur event handler, 151-152
onFocus event handler, 155-157
onLoad event handler, 157-158
onUnload event handler, 161-162
parent property, 139
self property, 143
setTimeout() method, 115-116
<FRAME> tag, 18-19
frames array, 132
<FRAMESET> tag, 18-19
Function utility objects
arguments property, 127
described, 77
JavaScript syntax, 39

JavaScript For Dummies Quick Reference

functions
See also methods
calling, 82
calling from event handlers, 152
defining, 83
reserved words, 189-190
returning values, 83
reusing, 177

G

games, setTimeout() method, 115-116

getDate() method, 102

getDay() method, 102

getHours() method, 102-103

getMinutes() method, 103

getMonth() method, 103

getSeconds() method, 103-104

getTime() method, 104

getTimezoneOffset() method, 104

getYear() method, 104-105

global variables, 54

go() method, 105

greater than (>), JavaScript comparison
operator, 48

greater than or equal to (>=), JavaScript
comparison operator, 48

Greenwich Mean Time (GMT), 104, 120

H

hash (#) symbol, 188
hash property, 132
<HEAD> tag, defining, 12
header section, defining with HTML, 12
height property, 133
hexadecimal RGB triplet, 148, 191
hidden elements
defining for interactive forms, 23
described, 62
JavaScript syntax, 38
hidden objects
name property, 138
type property, 146
value property, 147
history objects
back() method, 94-95
described, 62-63
forward() method, 101-102
go() method, 105
JavaScript syntax, 39
host property, 133
hours, specifying, 102-103, 114
HREF attribute, value specified for, 21
href property, 133-134
hspace property, 134
HTML (HyperText Markup Language)
See also JavaScript; objects

changing the color of Web page
elements, 164

comments, syntax, 18

creating Web pages, 10-14

defining Java applets, 29-31

described, 2, 198

document files

embedding tag, 16-18

embedding ActiveX component, 15-16

tags required, 10, 14

with JavaScript event handlers, 149-150

JavaScript template, 176
plug-ins and, 32-33

saving JavaScript files as source code, 182

syntax elements, 5-7
TYPE attribute, 146
<HTML> tag, defining, 14
HTTP (HyperText Transfer Protocol)
daemon, 198
described, 2
hypertext links, 20-21, 107, 187-188

1

icons, 7
if less than zero assignment (?:),
JavaScript comparison operator, 48
if . . . else expression, 43
image objects
border property, 128
complete property, 128
described, 63
height property, 133
hspace property, 134
JavaScript syntax, 38
moving, 165
name property, 138
onAbort event handler, 150
onError event handler, 155
onLoad event handler, 157-158
path name for, 165
responding to user-initiated events, 180
src property, 144
vspace property, 148
width property, 148
images array, 134
 tag
adding pictures to Web pages, 165
area objects and, 51
embedding in document files, 16-18
index, in arrays, 199
index property, 134
indexOf() method, 105-106
inequality (I=), JavaScript string
operator, 52
inheritance, 199
initial expressions, 45

¥

B

1
[=

-~

e e e B

i

[

J

Index

<INPUT> tag, 21-25
integers
See also numeric computations; values
floor() method and, 100
height property and, 133
round() method, 112
values for, 96
interactive forms
See also forms
defining with HTML, 12-13
elements, 21-29
interactive Web pages, 149
interactivity, 9
Internet, 199
See also Web
Internet Explorer
accessing source code, 177
ActiveX compatibility, 15, 167
ActiveX component, 166-167
blur() method and, 96
clickable maps, 180
client-side cookie support, 179
focus() method, 100
image objects, 63
JavaScript support, 3
loading files, 179
mailto: for form’s ACTION attribute, 126
onSelect event handler, 160
opener property, 139
text property, 145
viewing source code, 180
Internet protocols, 2
interpreter, 199
isNaN() function, 85, 185
italics() method, 106

I

Java, 199

See also applets
javaEnabled() method, 106
JavaScript-enabled browsers, 177
join() method, 106-107
.js file, 177

L

lastindexOf() method, 107

lastModified property, 134

length property, 126, 135-136

less than (<), JavaScript comparison
operator, 48

less than or equal to (<=), JavaScript
comparison operator, 48

link color, 11

See also linkColor property
link color, in Web pages, 164
link() method, 107-108

link objects
described, 64
event handlers, 154, 158-159
properties, 132-134, 140-142, 145
JavaScript syntax, 39
linkColor property, 136
links array, 136
LiveConnect, 199
LiveWire, 199
LN2 property, 136
LN10 property, 136
location objects
described, 64-65
properties, 132-134, 140-142
JavaScript syntax, 39
reload() method, 111
location property, 137
log() method, 108
LOG2E property, 137
logical operators
precedence order, 50
types of, 48-49
loops
endless, 156
in JavaScript, 43-47

M

Macromedia, Shockwave for Director, 165

<MAP> tag, 31-32, 51

Math utility objects
described, 65
E property, 130
JavaScript syntax, 40
LN2 property, 136
LN10 property, 136
LOG2E property, 137
PI property, 140
SQRT1_2 property, 144
SQRT2 property, 144

mathematical operators, 49
max() method, 108
method property, 137
methods

See also functions; names of specific
methods

described, 92, 200

reserved words, 189-190

MIME (Multipurpose Internet Mail

Extension), 109, 138, 144, 200

mimeTypes array, 138, 144, 146
mimeTypes objects

described, 200

description property, 130
enabledPlugin property, 131
mimeTypes array and, 138

min() method, 108

JavaScript For Dummies Quick Reference

minus sign (5), in assignment operators, 47
minutes, specifying, 103, 114
modulus (%)
JavaScript assignment operator, 47, 48
JavaScript mathematical operator, 49
money fields, formatting, 173-175
months, specifying, 102, 103, 113, 114
mouse clicks
See click() method
mouse pointer, 159
moving images, in Web pages, 165
multicolored bubbles, 30-31
multimedia, in Web pages, 164-165
MULTIPLE attribute, for <SELECT>
element, 25
multiplication (*=), JavaScript assign-
ment operator, 47
multiplication (*), JavaScript mathemati-
cal operator, 49
N

NAME attribute, for radio buttons, 24
name property, 126, 138-139
natural logarithms, 108, 136
navigator objects
appCodeName property, 127
appName property, 127
appVersion property, 127
described, 66
javaEnabled() method, 106
JavaScript syntax, 39
mimeTypes array, 138
plugins array, 140
userAgent property, 147
navigator properties, 181
nested objects, 171, 172-173
nested quotes, 40-41
Netscape Navigator
accessing embedded plug-ins, 168
accessing images, 16
accessing source code, 177
ActiveX compatibility, 15, 167
calculating values for HTML tags, 183
clickable maps, 180
interacting with applets, 167
interacting with JavaScript, 167
JavaScript security issues, 36
JavaScript support, 3
LiveConnect technology, 199
LiveWire tool, 199
loading files, 179
onSelect event handler, 160
plug-in objects, 168-169
plug-ins, 32
reset() method, 112
resetting functions assigned to event
handlers, 150

SRC attribute, 177

stopping onClick events, 153-154

viewing source code, 180
Netscape PowerStart, 178
new operator, creating objects, 89-90, 169
newline character

See writeIn() method
not (1), JavaScript logical operator, 49
not equal to (!=), JavaScript comparison

operator, 48

null data type, syntax, 37
number data type, syntax, 37
numeric, field-level validation, 185-186
numeric computations

See also integers; values

cos() method, 99

eval() function, 84-85

floor() method, 100

LN2 property, 136

LN10 property, 136

LOGZE property, 137

max() method, 108

min() method, 108

random() method, 111

setTimeout() method, 115-116

sin() method, 116

sort() method, 117

sqrt() method, 118

SQRT1_2 property, 144

SQRT?2 property, 144

tan{) method, 120

0

object model, 36-40 .
<OBJECT> tag, embedding ActiveX
component, 15-16
objects
See also HTML (HyperText Markup
Language); names of specific objects
blur() method and, 95-96
bypassing, 51
creating, 169-170
custom functions and, 89-90
debugging, 172
described, 56, 200
focus() method, 100
length property, 135-136
NAME attribute, 138-139
nested, 171-173
properties, 126
prototype property, 141
reserved words, 189-190
type property, 146
value property, 147
onAbort event handler, 150
onBlur event handler, 151-152

! ‘ \

onChange event handler, 152-153
onClick event handler, 153-155
onError event handler, 155
onFocus event handler, 155-157, 198
onLoad event handler, 157-158, 171
onMouseQut event handler, 51, 158-159
onMouseOQOver event handler, 51, 159
onReset event handler, 160
onSelect event handler, 160
onSubmit event handler, 161, 184
onUnload event handler, 161-162
open (document) method, 108-109, 139
open (window) method, 109-110, 139
opener property, 139
operators, 47-52
Option utility objects

defaultSelected property, 129

described, 77-78

index property, 134

JavaScript syntax, 40

name property, 138

selected property, 143

text property, 145

value property, 147
<OPTION> tag, repeating, 26
options array, 139, 143, 147
or (I 1), JavaScript logical operator, 49, 50
output stream, 108-109

) 4

plug-in objects
accessing with JavaScript, 32-33
for animation, 165
described, 67
description property, 130
documentation, 168, 169
embedding in HTML files, 168
Envoy document management, 168
filename property, 132
JavaScript syntax, 39
name property, 138
specific values, 169

plugins array, 140

plus sign (+), in assignment operators, 47

polymorphism, 200

pop-up messages, 181-182

port address, 133

port property, 140-141

port value, default, 141

pow() method, 110

prompt() method, 110, 181-182

properties, 126, 138, 146, 147, 200
See also names of specific properties;

objects

protocol property, 141

prototype property, 141

public keyword, 200

punctuation in JavaScript, 40

0

p -4

pairs, in JavaScript, 41
parameters, for custom JavaScript
functions, 88-89
parent property, 139-140
parentheses
omitting in event handlers, 150
precedence order for JavaScript
operators, 49, 50
parse() method, 110
parseFloat() function, 85-86, 185
parselnt() function, 86-87, 185
password objects
defaultValue property, 130
defining for interactive forms, 24
described, 66-67
JavaScript syntax, 38
name property, 138
select() method, 113
type property, 146
value property, 147
path name, image source, 165
pathname property, 140
PI property, 140
pictures, in Web pages, 165
See also image objects
platform dependence, 121

question mark (?), in search values, 142

R

radio buttons
checked property, 128
click() method, 97
defaultChecked property, 129
defining for interactive forms, 24-25
described, 67-68
implementation, 139
JavaScript syntax, 38
name property, 138
onClick event handler, 154
type property, 146
value property, 147
radix argument, 86-87
random() method, 111
referrer property, 142
relational operators, 49
reload() method, 111
reset() method, 112
reset objects
described, 68
for interactive forms, 25
JavaScript syntax, 38
name property, 138

JavaScript For Dummies Quick Reference

reset objects (continued)
onClick event handler, 154
type property, 146
value property, 147

result strings, 46

reverse() method, 112

RGB triplet values, 148, 191

round() method, 112

)

<SCRIPT> tag
accessing source code, 177
defining, 13-14
scripts, 200
scroll() method, 113
scrolling text, displaying, 170-171
search property, 142
seconds, specifying, 103-104, 115
select() method, 113
select objects
described, 68-69
JavaScript syntax, 38
name property, 138
onBlur event handler, 151-152
onChange event handler, 152-153
onFocus event handler, 155-157
options array, 139
selectedIndex property, 143
type property, 146
<SELECT> element, defining interactive
forms, 25-26
selected property, 143
selectedindex property, 143
self property, 143
See also window property
servers
See Web servers
setDate() method, 113-114
setHours() method, 114
setMinutes() method, 114
setMonth() method, 114
setSeconds() method, 115
setTime() method, 115
setTimeout() method, 115-116
setYear() method, 116
Shockwave for Director, Macromedia, 165
showHelp() function, 160
sin() method, 116
single quote ("), surrounding string
values, 40
slash+asterisk (/*)
HTML comments, 18
JavaScript comments, 42
small() method, 117
sort() method, 117
sound, in Web pages, 165
source code order, 131, 132, 135-136

source files, 177, 180, 201
special characters, encoding with
escape() function, 84
special comments characters, 177-178
spelling, 41-42, 82
split() method, 118
sqrt() method, 118
SQRT1_2 property, 144
SQRT2 property, 144
square brackets ([]), with conditional
expressions, 43, 88
SRC attribute, 177
src property, 144
Start Over button, Netscape
PowerStart, 179
state, 201
See also objects
status bar, setting value for, 159
status property, 144
strike() method, 118
string arguments
with escape() function, 84
with methods, 92
with parseFloat() function, 86
with parselnt() function, 87
with unescape() function, 87
string data type, syntax, 37, 79
String objects
big() method, 95
described, 79-80, 201
fontcolor() method, 164
indexOf() method, 105-106
small() method, 117
split() method, 118
strike() method, 118
sub() method, 119
substring() method, 119-120
sup() method, 120
toLowerCase() method, 121
toString() method, 121-122
toUpperCase() method, 122
String operators, 52
sub() method, 119
submit buttons
click() method, 97
described, 69
in interactive forms, 27, 34
JavaScript syntax, 38
name property, 138
onClick event handler, 155
type property, 146
value property, 147
submit() method, 119
substring() method, 119-120
substrings, 201
subtraction (-=), JavaScript assignment
operator, 47

m

e

J

L

]

Index

subtraction (-), JavaScript mathematical
operator, 49
suffixes property, 144
sup() method, 120
syntax
ActiveX component, 15-16
anchors, 19-20
arrays, 74
buttons for interactive forms, 22
check boxes for interactive forms, 22-23
custom JavaScript functions, 88-90
Date utility objects, 75
described, 201
fileUpload element for interactive
forms, 23
frames, 19
Function utility objects, 77
hidden element in interactive forms, 23
HTML comments, 18
HTML elements, 5-7
hypertext links, 20
 tag, 17
<INPUT> element, 21-25
interactive forms, 13
Java applets, 30-31
JavaScript, 40-42
Option utility objects, 78
password object in interactive forms, 24
plug-ins, 32-33)
radio buttons in interactive forms, 24-25
reset object in interactive forms, 25
<SELECT> element, 25-26
string objects, 37, 79
submit buttons, 27, 34
text elements, 27-28
<TEXTAREA> element, 28-29
variable scope, 54

T

tags, in HTML, 6-7, 201
See also HTML (HyperText Markup
Language)
tan() method, 120
target property, 145
template, 201
See also HTML (HyperText Markup
Language)
texicographic order, 117
TEXT attribute, fgColor property, 131
text color, 164
text files, saving JavaScript as, 182-183
text objects
defaultValue property, 130
described, 69-70
in interactive forms, 27-28
JavaScript syntax, 38

name property, 138
onBlur event handler, 151-152
onChange event handler, 152-153
onFocus event handler, 155-157
onSelect event handler, 160
scrolling, 170-171
select() method, 113
type property, 146
value property, 147
text property, 145
textarea objects
defaultValue property, 130
described, 70
JavaScript syntax, 39
name property, 138
onBlur event handler, 151-152
onChange event handler, 152-153
onFocus event handler, 155-157
onSelect event handler, 160
select() method, 113
type property, 146
value property, 147
<TEXTAREA> element, defining interac-
tive forms, 25, 28-29
this keyword, 90, 201 -
time, specifying, 104, 115
time zone, specifying, 104
title property, 145
<TITLE> tag, 34
toGMTString() method, 120
toLocaleString() method, 121
toLowerCase() method, 121
top property, 146
top-down syntax considerations, 42
toString() method, 121-122
toUpperCase() method, 122
transaction, 201
Tumbleweed Software, Envoy document
management plug-in, 168
TYPE attribute, for <INPUT> tag, 28
type property, 146
typeof operator, 50-51

U

unary operators

examples, 52

syntax, 49
unescape() function, 87
Universal Coordinated Time, 122
update expressions, 45
URL (Uniform Resource Locator), 3, 201
user input, validating, 183
userAgent property, 147
user-initiated events, 150, 180
UTC() method, 122
utility objects, 39-40

| JavaScript For Dummies Quick Reference

4

validating user input, 183-187
value property, 126, 147
values

See also integers; numeric computa-

tions; properties
ALINK attribute, 126
for angles, 94
assigning to variables, 53
calculating for HTML tags, 183
of colors, 191-195
for integers, 96
isNaN() function and, 85

for METHOD attribute of forms, 137

of ports, 141

resetting for event handlers, 150

returned by functions, 83

round() method, 112

for searches, 142

sort() method, 117

status property, 144

user-agent header, 147

VLINK attribute, 148
variables, 53-54, 189-190
verifyExistence() function, 152
VLINK (followed link) color, 164
vlinkColor property, 148
void operator, 51
vspace property, 148

w

Web
application development, 2-3
described, 202
plug-ins, 33
protocols, 2
search engines, 142

Web browsers
hiding source code, 176-177
script compatibility, 181

Web clients, 2-3, 198, 202

Web pages
adding multimedia to, 164-165
bookmarking, 34
clickable maps, 31-32
configuring, 33-34
content, 198
creating links

to other pages, 187-188
within a single page, 188

creating with HTML, 10-14
displaying money values, 173
embedding ActiveX in, 167
embedding images in, 16-18

embedding Java applets in, 29-31,

167-168

interactive, 149
JavaScript template for, 176
plain-vanilla version, 181
plug-ins for sale, 33
referencing .js files in, 177
scrolling text in, 170-171
title, 34

Web servers, 2, 202

Web sites
ActiveX plug-in for Netscape

Navigator, 167
described, 202
Envoy document management
plug-in, 168

for JavaScript security issues, 36
JavaScript-related, 142
Netscape PowerStart, 179

while loops, 43, 46-47

width property, 148

window objects
clearTimeout() method, 97
confirm() method, 98-99
defaultStatus property, 129, 144
described, 70-71
displaying pop-up dialog box, 93
frames array, 132
JavaScript syntax, 38 —
methods and, 92
name property, 138
onError event handler, 155
onFocus event handler, 155-157
onLoad event handler, 157-158
onUnload event handler, 161-162
opener property, 139
parent property, 139-140
prompt() method, 110
scroll() method, 113
self property, 143
setTimeout() method, 115-116
status property, 144
top property, 146

window property, 148

with keyword, 90

wizards, 202

World Wide Web
See Web

write() method, 122-123

writeln() method, 123

WYSIWYG (What You See Is What You

Get), 202

4

year, specifying, 104105, 116

Includes Complete JavaScript Syntax for Netscape
Navigator and Internet Explorer!

i .

A Quick Reference for the Rest of Us!”

Everybody’s creating Web pages for fun and
profit — and now you can too, with JavaScript,
an easy-to-use scripting language! Keep
JavaScript™ For Dummies® Quick Reference handy
for tips on everything you need to know about
building interactive Web pages. Whether
you're a seasoned HTML pro or you're just
beginning your Internet adventure, this
complete, up-to-the-minute JavaScript
language reference will save you time and help
you create attractive, compelling Web pages.

Find what you need quickly with our

For Dummies® Quick References! The design
features tasks and commands in alphabetical
order, clear-cut, step-by-step instructions, and
easy-to-follow advice. “Get in and get out”
quickly and get the information you really
need without reading lots of extra material!

READER LEVEL
Beginning to Advanced

COMPUTER BOOK SHELVING CATEGORY
PCs & Macs/Internet/JavaScript

$12.99 USA
$17.99 Canada
£11.99 UK

JavaScript is a trademark of Sun Microsystems, Inc.

Look for IDG Books
Worldwide's JavaScript™
For Dummies® for more
information on creating
your own Web page.

For Dummies Quick
References and For
Dumrmies books are available on all your
favorite or not-so-favorite hardware and
software products. Look for them wherever
computer books are sold!

JAVASCRIPT |
DU’ "‘11 ES

Let These Icons Guide You!
WP

Points out time-saving
shortcuts and handy tricks

~. Warns you of common
| mistakes and tells you how
/ to avoid them

Alerts you to real-life, working
examples you can use in your
own Web pages

The IDG Books Worldwide logo is a registered trademark under exclusive license to IDG Books Worldwide, Inc., from International Data
Group, Inc. The ...For Dummies logo is a trademark, and Dummies Man, For Dummies, A Quick Reference for the Rest of Us!, Your
Fingertip Companion, Fun, Fast & Cheap!, and Dummies Press are registered trademarks of IDG Books Worldwide, Inc.

Printed in the U.S.A.

55‘501 12’ |

BESTSELLING
BOOK SERIES
see us at: _
www.dummies.com
& for info on other IDG Books titles:
www.idgbooks.com

a division of

104 Books Worldwide, Inc.
An Intemational

Data Group Company

J:rJK; D ies P "
73 |

ISBN 0-7645-0112-7

“ } I“ 5['299
9 '780764"501128

