
PANTONE 2955 CPANTONE Orange 021 C

CMYK 100, 45, 0, 37CMYK O, 53, 100, 0

Black 100%Black 50%

PANTONE 2955 CPANTONE Orange 021 C

CMYK 100, 45, 0, 37CMYK O, 53, 100, 0

Black 100%Black 50%

ISBN: 978-0-9802858-5-7

USD $44.95 CAD $44.95

Web Design

Tommy has been designing web sites and intranets since writing his first
line of HTML in 1993. Employed as a Technical Webmaster/Software
Developer at a Swedish public agency, Tommy Olsson is a pragmatic
evangelist for web standards and accessibility.

ABOUT TOMMY OLSSON

Paul is a freelance web designer specializing in CSS layouts. He entered
the world of web design back in 1998, and what started as a hobby soon
became a full-time occupation. You’ll often find Paul giving advice in the
SitePoint forums, where he has racked up nearly 20,000 posts — all of
them CSS-related.

ABOUT PAUL O’BRIEN

Almost every web site created today is built using CSS, which is why a thorough
knowledge of this technology is mandatory for every web designer. There are plenty
of good resources to help you learn the basics, but if you’re ready to truly master the
intricacies of CSS, this is the book you need.

The Ultimate CSS Reference is the definitive resource for mastering CSS. The entire
language is clearly and concisely covered, along with browser compatibility details,
working examples, and easy-to-read descriptions.

Authored by two of the world’s most renowned CSS experts, this is a comprehensive
reference that you’ll come back to time and time again.

ALL THE CSS KNOWLEDGE YOU’LL EVER NEED!

CSS
R E F E R E N C E

T H E U L T I M A T E

To m m y O l s s o n & P a u l O ’ B r i e n

T
H

E
U

L
T

IM
A

T
E

T
o

m
m

y
 O

lsso
n

 &
 P

a
u

l O
’B

rie
n

R
E

FE
R

E
N

C
E

CSS
cover-cssref1-final.indd 1 1/29/2008 5:52:39 PM

THE ULTIMATE
CSS REFERENCE

BY TOMMY OLSSON
& PAUL O’BRIEN

The Ultimate CSS Reference ii

The Ultimate CSS Reference
by Tommy Olsson and Paul O’Brien

Copyright © 2008 SitePoint Pty Ltd

Managing Editor: Simon Mackie Technical Director: Kevin Yank

Technical Editor: Andrew Tetlaw Editor: Georgina Laidlaw

Expert Reviewer: Natalie Downe Cover Design: Simon Celen

Expert Reviewer: Roger Johansson Interior Design: Xavier Mathieu

Printing History:

First Edition: February 2008

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations included in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty Ltd, nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty Ltd

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978–0–9802858–5–7

Printed and bound in the United States of America

iii

About the Authors
Hailing from Hampshire in the UK, Paul O’Brien is a freelance web designer

specializing in CSS layouts. After selling a successful packaging business back in

1998 he was all set for a quiet existence, dabbling with his hobby of web design.

However, what started out as a hobby soon became a full-time occupation as the

demand for well-coded CSS layouts started growing. Even when he’s not working,

he can be found giving out helpful advice in the SitePoint Forums where he has

racked up nearly 20,000 posts, all of which are CSS-related.

Paul’s other passion is karate, which he has studied continuously for 35 years. He

currently holds the rank of Third Dan (Sandan) in Shotokan karate, so I wouldn’t

argue with him if I were you!

Tommy Olsson is a pragmatic evangelist for web standards and accessibility, who

lives in the outback of central Sweden. Visit his blog at

http://www.autisticcuckoo.net/.

About the Expert Reviewers
The always excitable Natalie Downe works for Clearleft, in Brighton, as a client-side

web developer. An experienced usability consultant and project manager, her first

loves remain front-end development and usability engineering. She enjoys Doing

Things Right and occasionally dabbling in the dark art of Python and poking the

odd API.

Roger Johansson is a web professional with a passion for web standards,

accessibility, and usability. He spends his days developing web sites at Swedish

web consultancy NetRelations, and his evenings and weekends writing articles for

his personal sites, http://www.456bereastreet.com/ and

http://www.kaffesnobben.com/.

About the Technical Editor
Andrew Tetlaw has been tinkering with web sites as a web developer since 1997

and has also worked as a high school English teacher, an English teacher in Japan,

a window cleaner, a car washer, a kitchen hand, and a furniture salesman. At

SitePoint he is dedicated to making the world a better place through the technical

The Ultimate CSS Reference iv

editing of SitePoint books and kits. He is also a busy father of five, enjoys coffee,

and often neglects his blog at http://tetlaw.id.au/.

About the Technical Director
As Technical Director for SitePoint, Kevin Yank oversees all of its technical

publications—books, articles, newsletters, and blogs. He has written over 50 articles

for SitePoint, but is best known for his book, Build Your Own Database Driven

Website Using PHP & MySQL. Kevin lives in Melbourne, Australia, and enjoys

performing improvised comedy theater and flying light aircraft.

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand content

for web professionals. Visit http://www.sitepoint.com/ to access our books,

newsletters, articles, and community forums.

The Online Reference
The online version of this reference is located at http://reference.sitepoint.com/css.

The online version contains everything in this book, fully hyperlinked and

searchable. The site also allows you to add your own notes to the content and to

view those added by others. You can use these user-contributed notes to help us to

keep the reference up to date, to clarify ambiguities, or to correct any errors.

Your Feedback
If you wish to contact us, for whatever reason, please feel free to email us at

books@sitepoint.com. We have a well-manned email support system set up to track

your inquiries. Suggestions for improvement are especially welcome.

Reprint Permissions
Do you want to license parts of this book for photocopying, email distribution,

Intranet or Extranet posting or for inclusing in a coursepack? Please go to

Copyright.com and type in this book’s name or ISBN number to purchase a

reproduction license.

v

Table of Contents

Chapter 1 What Is CSS? . 1

CSS Versions . 4

Linking CSS to a Web Document . 5

Media Queries . 14

Standards Mode, Quirks Mode, and Doctype Sniffing 17

Summary . 20

Chapter 2 General Syntax and
Nomenclature . 23

Statements . 25

At-rules . 25

Rule Sets . 26

Selectors . 26

Declaration Blocks . 28

Declarations, Properties, and Values . 28

Keywords . 29

Lengths and Units . 29

Percentages . 32

Colors . 33

Numbers . 37

Strings . 37

URIs . 38

Initial Values . 39

Shorthand Properties . 39

CSS Comments . 42

CSS Identifiers . 43

CSS Escape Notation . 43

The Ultimate CSS Reference vi

CSS Syntax Errors . 44

Summary . 45

Chapter 3 At-rules Reference . 47

@charset . 48

@import . 49

@media . 51

@page . 52

@font-face . 54

@namespace . 55

Chapter 4 Selector Reference . 59

Universal Selector . 60

Element Type Selector . 62

Class Selector . 63

ID Selector . 65

Attribute Selector . 67

CSS3 Attribute Selectors . 71

Selector Grouping . 72

Combinators . 73

Descendant Selector . 74

Child Selector . 76

Adjacent Sibling Selector . 77

General Sibling Selector . 79

Pseudo-classes . 80

:link . 83

:visited . 84

:active . 85

:hover . 86

vii

:focus . 87

:first-child . 88

:lang(C) . 89

CSS3 Pseudo-classes . 90

Pseudo-elements . 106

:first-letter . 107

:first-line . 110

:before . 113

:after . 114

::selection . 115

Chapter 5 The Cascade, Specificity, and
Inheritance . 117

The Cascade . 118

!important Declarations . 124

Specificity . 126

Inheritance . 133

The CSS Property Value inherit . 135

Summary . 137

Chapter 6 CSS Layout and Formatting 139

The Viewport, the Page Box, and the Canvas . 141

The CSS Box Model . 142

Containing Block . 147

Collapsing Margins . 148

The Internet Explorer 5 Box Model . 156

The Internet Explorer hasLayout Property . 158

Formatting Concepts . 163

Block Formatting . 164

The Ultimate CSS Reference viii

Inline Formatting . 166

List Formatting . 168

Table Formatting . 168

Replaced Elements . 175

Positioning . 176

Relative Positioning . 176

Absolute Positioning . 178

Fixed Positioning . 178

Stacking Contexts . 179

Floating and Clearing . 180

The Relationship Between display, position, and float 184

Summary . 185

Chapter 7 Box Properties . 187

Dimensions . 187

height . 188

min-height . 190

max-height . 192

width . 194

min-width . 196

max-width . 198

Margins . 200

margin-top . 200

margin-right . 202

margin-bottom . 205

margin-left . 207

margin . 209

Padding . 211

padding-top . 212

padding-right . 213

ix

padding-bottom . 215

padding-left . 216

padding . 218

Borders and Outlines . 220

border-top-color . 220

border-top-style . 222

border-top-width . 224

border-top . 226

border-right-color . 228

border-right-style . 229

border-right-width . 232

border-right . 233

border-bottom-color . 235

border-bottom-style . 236

border-bottom-width . 239

border-bottom . 240

border-left-color . 242

border-left-style . 243

border-left-width . 246

border-left . 247

border-color . 249

border-style . 251

border-width . 254

border . 255

outline-color . 258

outline-style . 259

outline-width . 260

outline . 261

The Ultimate CSS Reference x

Chapter 8 Layout Properties . 263

display . 264

position . 267

float . 269

clear . 271

visibility . 273

top . 275

right . 276

bottom . 277

left . 278

z-index . 279

overflow . 280

clip . 283

Chapter 9 List Properties . 285

list-style-type . 286

list-style-position . 288

list-style-image . 289

list-style . 290

Chapter 10 Table Properties . 291

table-layout . 292

border-collapse . 293

border-spacing . 294

empty-cells . 295

caption-side . 297

xi

Chapter 11 Color and Backgrounds 299

background-color . 299

background-image . 301

background-repeat . 303

background-position . 305

background-attachment . 309

background . 312

color . 315

Chapter 12 Typographical Properties 317

font-family . 318

font-size . 320

font-weight . 321

font-style . 323

font-variant . 324

font . 325

letter-spacing . 326

word-spacing . 327

line-height . 328

text-align . 330

text-decoration . 332

text-indent . 334

text-transform . 335

text-shadow . 337

vertical-align . 338

white-space . 341

direction . 343

unicode-bidi . 344

The Ultimate CSS Reference xii

Chapter 13 Generated Content . 347

content . 348

counter-increment . 352

counter-reset . 354

quotes . 355

Chapter 14 User Interface Properties 357

cursor . 358

Chapter 15 Paged Media Properties 361

page-break-before . 362

page-break-inside . 363

page-break-after . 364

orphans . 365

widows . 366

Chapter 16 Vendor-specific Properties 367

Mozilla Extensions . 371

-moz-border-radius . 372

-moz-box-sizing . 375

The display Property Value: -moz-inline-box 377

Internet Explorer Extensions . 379

zoom . 380

filter . 381

behavior . 387

The expression Property Value . 388

Summary . 390

xiii

Chapter 17 Workarounds, Filters, and
Hacks . 391

Internet Explorer Conditional Comments . 394

Workarounds and Filters . 400

CSS Hacks . 404

Summary . 408

Chapter 18 Differences Between HTML and
XHTML . 409

MIME Types . 411

Case Sensitivity . 412

Optional Tags . 413

Root Element Properties . 415

Appendix A Alphabetic Property Index 417

The Ultimate CSS Reference xiv

Chapter 1
W

hat Is CSS?

What Is CSS?
Have you ever thought about what a web page is? I mean, what it really is? Some

people think of a web page as a visual medium—an aesthetically pleasing experience

which may or may not contain information that’s of interest to the viewer. Other

people think of a web page as a document that may be presented to readers in an

aesthetically pleasing way. From a technical point of view, the document

interpretation is more appropriate.

When we examine the elements of its construction, a web document can consist of

up to three layers—content, presentation, and behavior—as illustrated in Figure

1.1.

The content layer is always present. It comprises the information the author wishes

to convey to his or her audience, and is embedded within HTML or XHTML markup

that defines its structure and semantics. Most of the content on the Web today is

text, but content can also be provided through images, animations, sound, video,

and whatever else an author wants to publish.

The Ultimate CSS Reference 2

The presentation layer defines how the content will appear to a human being who

accesses the document in one way or another. The conventional way to view a web

page is with a regular web browser, of course, but that’s only one of many possible

access methods. For example, content can also be converted to synthetic speech for

users who have impaired vision or reading difficulties.

Figure 1.1: The three layers of a web document

The behavior layer involves real-time user interaction with the document. This

task is normally handled by JavaScript. The interaction can be anything from a

trivial validation that ensures a required field is filled in before an order form can

be submitted, to sophisticated web applications that work much like ordinary

desktop programs.

It’s possible to embed all three layers within the same document, but keeping them

separate gives us one valuable advantage: we can modify or replace any of the layers

without having to change the others.

Certain versions of HTML and XHTML also contain presentational element

types—that is, elements that specify the appearance of the content, rather than

structure or semantics. For example, and <i> can be used to control the

presentation of text, and <hr> will insert a visible rule element. However, as these

types of elements embed presentation-layer information within the content layer,

they negate any advantage we may have gained by keeping the layers separate.

Cascading Style Sheets, or CSS, is the recommended way to control the presentation

layer in a web document. The main advantage of CSS over presentational HTML

markup is that the styling can be kept entirely separate from the content. For

example, it’s possible to store all the presentational styles for a 10,000-page web

3What Is CSS?

site in a single CSS file. CSS also provides far better control over presentation than

do presentational element types in HTML.

By externalizing the presentation layer, CSS offers a number of significant benefits:

■	 All styling is kept in a limited number of style sheets. The positive impact this

has on site maintenance can’t be overestimated—editing one style sheet is

obviously more efficient than editing 10,000 HTML files!

■	 The overall saving in bandwidth is measurable. Since the style sheet is cached

after the first request and can be reused for every page on the site, it doesn’t have

to be downloaded with each web page. Removing all presentational markup from

your web pages in favor of using CSS also reduces their size and bandwidth

usage—by more than 50% in many documented cases. This benefits the site

owner, through lower bandwidth and storage costs, as well as the site’s visitors,

for whom the web pages load faster.

■	 The separation of content from presentation makes it easier for site owners to

reuse the content for other purposes, such as RSS feeds or text-to-speech

conversion.

■	 Separate styling rules can be used for different output media. We no longer need

to create a special version of each page for printing—we can simply create a

single style sheet that controls how every page on the site will be printed.

Although CSS is designed to be independent of the markup language of the

documents to which it is applied, in reality, it’s used mainly with HTML and XML

(including XHTML).

W
hat Is CSS?

HTML and XHTML
In this reference, when we mention HTML, we really mean HTML and/or XHTML,
except where otherwise specified. The differences between the two markup languages
are all documented in Differences Between HTML and XHTML (p. 409).

The Ultimate CSS Reference 4

CSS Versions

The first CSS specification, CSS1,1 became a World Wide Web Consortium (W3C)2

recommendation in December 1996. It included properties for controlling

typography, such as fonts, text alignment, spacing, margins, and list formatting. It

allowed the designer to specify the dimensions of block-level boxes and to surround

boxes with borders. Yet, when it came to layout and design, CSS1 didn’t have much

to offer: you could specify foreground and background colors and background

images, and you could float a box to the left or to the right and make text flow around

it.

CSS2 came out in 1998, and contained a lot of the features that designers had been

longing for. Boxes could be made to behave like HTML table cells, or they could be

positioned in different ways; more powerful selectors (p. 59) were available; style

sheets could be imported into other style sheets; style rules could be specific to

certain output media; and so on. Vast improvements had also been made in the

areas of paged media (printing), and the generation of content from the style sheet.

As it turned out, some parts of CSS2 were very difficult to implement, so the W3C

decided to revise the specification and adapt it to real-world situations. Most of the

special features for paged media were removed. The creation of generated content

(p. 347) was restricted to the :before and :after pseudo-elements, and restrictions

were placed on how generated content could be styled.

The name of the revised version was “Cascading Style Sheets, Level 2 Revision

1”—CSS2.1 for short.3

References to CSS2 Mean CSS2.1
Today, references to CSS2 usually mean CSS2.1, since the original CSS2 was never
really implemented by any browser.

In this reference, we’ll use the term CSS2 when we refer to Level 2 of the CSS
specification (as opposed to CSS1 or CSS3). Unless we explicitly state otherwise,

1 http://www.w3.org/TR/CSS1
2 http://www.w3.org/
3 http://www.w3.org/TR/CSS21/

http://www.w3.org/TR/CSS1
http://www.w3.org/
http://www.w3.org/TR/CSS21/

this term refers to CSS2.1, which is the latest—and current—revision of the CSS2
specification.

The work on CSS34 has been going on for years, but seems to advance very slowly.

CSS3 is divided into modules, and the idea is that each module can become a

recommendation independently from the others. No module has reached that stage,

but some parts of the CSS3 specification have already been implemented by browsers.

Some features in the CSS3 working drafts that have already been implemented

include multi-column output of text,5 rounded corners on borders,6 opacity control,7

HSL/HSLA/RGBA colors,8 and text shadows9 (a part of CSS2 that was removed in

CSS2.1).

W
hat Is CSS?

5What Is CSS?

The CSS3 selectors module10 will be released separately from the rest of CSS3.

Some of those selectors are already implemented in modern browsers.

Linking CSS to a Web Document
We can use any of three methods to specify CSS styling rules for elements in an

HTML document, but only one method to specify CSS rules for XML documents.

We can use all four methods with XHTML documents that are served as XML.

XHTML served as HTML is HTML as far as browsers are concerned, so only the

three HTML methods can be used in that case. See Differences Between HTML and

XHTML (p. 409) for details about the different ways in which you can serve XHTML.

The methods are:

■	 Place the rules in a separate, external style sheet that’s referenced by a link

element or an @import rule in a style element (HTML, XHTML).

4 http://www.w3.org/Style/CSS/current-work
5 http://www.w3.org/TR/css3-multicol/
6 http://www.w3.org/TR/css3-background/#the-border-radius
7 http://www.w3.org/TR/css3-color/#transparency
8 http://www.w3.org/TR/css3-color/
9 http://www.w3.org/TR/css3-text/#text-shadow

10	 http://www.w3.org/TR/css3-selectors/

http://www.w3.org/Style/CSS/current-work
http://www.w3.org/TR/css3-multicol/
http://www.w3.org/TR/css3-background/#the-border-radius
http://www.w3.org/TR/css3-color/#transparency
http://www.w3.org/TR/css3-color/
http://www.w3.org/TR/css3-text/#text-shadow
http://www.w3.org/TR/css3-selectors/

The Ultimate CSS Reference 6

■	 Place the rules within an separate, internal style sheet within a style element

(HTML, XHTML).

■	 Place the rules in inline CSS specified in a style attribute of a markup tag (HTML,

XHTML).

■	 Place the rules in a separate, external style sheet referenced by a processing

instruction (or PI) (XML).

Separate style sheets—both external and internal—can be targeted to one or more

output media. External style sheets can be specified as alternative, which means

that they’re not applied by default, but can be enabled by users in browsers that

support alternative style sheets.

We specify the output media using the predefined media types shown in Table 1.1.

Table 1.1: Media Types

DescriptionMedia Type

applies to all media"all"

Braille/tactile feedback devices "Braille"

paged Braille printers "embossed"

handheld devices"handheld"

paged media and print preview mode on the screen "print"

projected presentation (used by Opera in full-screen mode) "projection"

color computer screens "screen"

speech synthesizers (see the note below) "speech"

media with a fixed-pitch character grid "tty"

television-type devices"tv"

7What Is CSS?

Using one or more external style sheets is generally considered to be the best practice,

as it enforces the desirable separation between content and presentation.

Should each style sheet be specific to one output medium, or should you have a

single style sheet and use @media at-rules (p. 51) to specify styles for different

output media? The answer to that question depends, primarily, on how differently

the content will be presented in different media. Style sheets for "screen" and

"projection" media can often be combined, while style sheets for "print" or

"handheld" usually benefit from being kept separate.

An internal style sheet can sometimes be justified on a page which has presentational

needs that are very different from the rest of the site. It could also be used, along

with one or more external style sheets, for styling special elements that only occur

on one page.

W
hat Is CSS?

Using an Internal Style Sheet During Development
It can be useful to keep your CSS in an internal style sheet during the initial
development phase, to avoid problems that can arise when style sheets are cached
by the browser. Once the design is completed, you can move the CSS to an external
style sheet.

Inline styles should normally be avoided, since they tie presentation to content in

the same unfortunate way as do presentational HTML elements such as the

deprecated and <center> elements.

About Aural Style Sheets
Aural style sheets (media="speech") are not formally specified in CSS2.1. The
specification reserves the speech media type, but says nothing about which properties
apply to it and which don’t. Therefore, aural style sheets will not be covered in this
reference.

Referencing an External Style Sheet Using a link Element or @import
At-rule

Here’s an example of an external style sheet reference that uses a link element:

The Ultimate CSS Reference 8

<link rel="stylesheet" type="text/css" href="/style.css"

 media="screen">

The link element, which must reside within the head element of an HTML

document, links an external style sheet to the document. Multiple, comma-separated

media types can be specified in the media attribute, for example,

media="screen,projection". If it’s omitted, this attribute defaults to

media="screen", according to the HTML4 specification, but in reality, browsers

seem to apply media="all" if the attribute is omitted.

Here’s an example of a style sheet reference that uses an @import at-rule (p. 49):

<style type="text/css">

 @import url(/style.css);

</style>

The style element, like the link element, must reside within the head element.

Relative URIs in the href attribute or @import rule are relative to the HTML

document that contains the link. (When @import is used inside an external style

sheet, relative URIs are relative to the importing style sheet.)

The link element can also be used to link to an alternative style sheet:

<link rel="alternate stylesheet" type="text/css"

 href="/contrast.css" media="screen" title="High contrast">

This alternative style sheet, which is disabled by default, can be enabled by the user

if the browser supports alternative style sheets. All style sheets with the same title

attribute will be enabled or disabled as a group. Alternative style sheets are mutually

exclusive, so enabling one group will automatically disable all other groups.

Watch Out for Alternative Spelling
The CSS specifications use the term “alternate” instead of “alternative.” The keyword
used in the rel attribute must also be "alternate".

9What Is CSS?

A style sheet that’s linked with rel="stylesheet" but lacks a title attribute, like

the first example in this section, is known as a persistent style sheet. It will always

be applied—even if an alternative style sheet is enabled by the user.

A style sheet that’s linked with rel="stylesheet", and for which a title attribute

has been specified, is known as a preferred style sheet. It will be applied unless

the user has enabled an alternative style sheet.

Let’s take a look at a more complex example:

<link rel="stylesheet" type="text/css"

 href="/base.css" media="all">

<link rel="stylesheet" type="text/css"

 href="/def_layout.css" media="screen" title="Default">

<link rel="stylesheet" type="text/css"

 href="/def_colour.css" media="screen" title="Default">

<link rel="alternate stylesheet" type="text/css"

 href="/alt_layout.css" media="screen" title="Custom">

<link rel="alternate stylesheet" type="text/css"

 href="/alt_colour.css" media="screen" title="Custom">

<link rel="stylesheet" type="text/css"

 href="/print.css" media="print">

Here, base.css is a persistent style sheet, as it doesn’t have a title attribute; it will

always be applied for all media types, since it has the attribute media="all".

By default, def_layout.css and def_colour.css will also be applied for screen media,

since they’re preferred style sheets.

If the user selects Custom style sheets in the browser, as depicted in Figure 1.2,

def_layout.css and def_colour.css will be disabled, and alt_layout.css and

alt_colour.css will be enabled.

W
hat Is CSS?

The Ultimate CSS Reference 10

Figure 1.2: Selecting alternative style sheets in Firefox

When printing, or in print preview, print.css will be applied since it has the attribute

media="print". Note that base.css will also be applied since it specifies

media="all". The other four style sheets will not be applied here, however, since

they specify only screen media.

We can use the alternative style sheet feature to offer multiple viewing options from

which the user can make a selection. In Eric Meyer’s Complex Spiral Demo,11 the

user is able to select from one of many available alternative style sheets, as depicted

in Figure 1.3.

11 http://meyerweb.com/eric/css/edge/complexspiral/demo.html

http://meyerweb.com/eric/css/edge/complexspiral/demo.html

W
hat Is CSS?

11 What Is CSS?

Figure 1.3: Alternative style sheets in the Complex Spiral Demo

Using an Internal Style Sheet

The style element, which must reside within the head element of an HTML

document, specifies an internal style sheet which will only apply to elements in

the enclosing document:

<style type="text/css" media="screen,projection">

⋮ CSS rules…

</style>

The type attribute is required, and should have the value "text/css"which denotes

CSS styles. As in the case of external style sheets, the media attribute defaults to

"screen" if you omit it, according to the HTML4 specification, but in reality,

browsers seem to apply media="all" if the attribute is omitted.

Pre-HTML4 browsers don’t support the <style> element—they’ll render the

element’s content as text. As a special case, an SGML comment surrounding the

content in its entirety will be ignored in CSS-compatible browsers. Note, however,

that this applies only to HTML. It doesn’t apply to XHTML served as XML—there,

such a comment will be treated as a comment, effectively hiding all the CSS.

The Ultimate CSS Reference 12

The practice of commenting out the content of <style> elements is archaic and

unnecessary, since very few pre-HTML4 browsers are in regular use these days. It’s

harmless in HTML, but must be avoided in XHTML—even if served as text/html—to

ensure that such a document will still work when served as XML.

Here’s an example of an internal style sheet in HTML, which is hidden from ancient

browsers:

<style type="text/css" media="screen,projection">

<!-
⋮ CSS rules…
-->

</style>

Using Inline Styles

The following inline CSS will make the font size of an unordered list 120% of what

it would normally be. It will also make the text and the list bullet points dark green:

<ul style="font-size:120%; color:#060">

⋮ list items…

Using style attributes creates a strong coupling between the content and the

presentation, which is usually undesirable.

Inline CSS is more limited than internal or external style sheets. It’s not possible

to specify a media type, so style attributes will apply for all media types. Also, you

can’t specify inline CSS rules for pseudo-classes (p. 80) or pseudo-elements (p. 106).

If you use inline CSS, the HTML specification12 states that you must declare the

style language. You can do so using a HTTP header or an equivalent <meta> element:

<meta http-equiv="Content-Style-Type" content="text/css">

12 http://www.w3.org/TR/html401/present/styles.html#default-style

http://www.w3.org/TR/html401/present/styles.html#default-style

In reality, browsers don’t care because the HTML specification also states that the

style content type defaults to "text/css" if it’s not specified in a <meta> element

or a Content-Style-Type HTTP header.

Yes, it may seem that the statements “you must declare the style language” and “the

style content type defaults to "text/css" if not specified” are mutually exclusive,

but the intent was only to provide a safety net. The specification recommends that

authoring tools automatically generate the style sheet language information in order

to avoid forcing user agents to rely on the default value. The effectiveness of this

recommendation remains to be seen.

Referencing an External Style Sheet Using an XML PI

W
hat Is CSS?

13What Is CSS?

In XML documents, including XHTML served as XML, an external style sheet can

be referenced using a processing instruction (PI). Such processing instructions are

normally part of the XML prologue, coming after the XML declaration, but before

the doctype declaration (if there is one) and the root element’s start tag.

This example shows an XML prologue with a persistent style sheet (base.css), a

preferred style sheet (default.css), and an alternative style sheet (custom.css):

<?xml version="1.0" encoding="utf-8"?>

<?xml-stylesheet type="text/css" href="/base.css"?>

<?xml-stylesheet type="text/css" href="/default.css"

 title="Default"?>

<?xml-stylesheet type="text/css" href="/custom.css"

 title="Custom" alternate="yes"?>

Watch Out for Alternative Spelling
The CSS specifications use the term “alternate” instead of “alternative.” The attribute
name in a PI must be alternate.

Differences Between the Methods

In addition to the differences that exist in the ways the style sheets or CSS rules are

specified in the markup, there are a few other differences that we may need to

consider, depending on which method we choose:

The Ultimate CSS Reference 14

■	 An external style sheet can’t contain SGML comments (<!-- … -->) or HTML

tags (including <style> and <style>). Nor can it use SGML character references

(such as ©) or character entity references (such as ©). If you need to

use special characters in an external style sheet, and they can’t be represented

through the style sheet’s character encoding, specify them with CSS escape

notation (p. 43).

■	 The content type of the style element type in HTML is CDATA, which means

that character references (numeric character references or character entity

references) in an internal style sheet aren’t parsed. If you need to use special

characters in an internal style sheet, and they can’t be represented with the

document’s character encoding, specify them with CSS escape notation (p. 43).

In XHTML, the content type is #PCDATA, which means that character references

are parsed, but only if the document’s served as XML.

■	 Unlike in style elements, character references are parsed in style attributes,

even in HTML.

Media Queries
Media queries is a CSS3 extension to media types that allows us far greater control

over rendering across different devices than do media types alone. Used in

conjunction with a media type, a media query is a logical expression, evaluating to

true or false, that tests one or more features of the output device to which the CSS

is to be applied. Media queries can be used in <link> tags, XML processing

instructions, the @import at-rule, and the @media at-rule. The CSS associated with

the media query expression is only applied if the expression evaluates to true.

A logical expression can consist of either a media feature, or a media feature followed

by a colon (:) and a value—similar to a normal property/value pair. A logical

expression in a media query must be enclosed in parentheses (…). Let’s look at a

some examples:

<link rel="stylesheet" type="text/css" href="/style.css"

 media="all and (color)">

<?xml-stylesheet media="all and (color)" rel="stylesheet"

 href="example.css" ?>

@import url(/style.css) all and (color);

@media all and (color) {
⋮ one or more rule sets…

}

In the above examples, we can see media queries used in the media attribute of a

<link> tag and an XML processing instruction, and with the optional media type

list in @import and @media at-rules. In all three examples, the media query uses the

expression all and (color) to indicate that the CSS should be applied to all output

media that are capable of representing color.

Here’s another example that applies to hand-held devices, but only if the viewport

width is at least 20em:

W
hat Is CSS?

15What Is CSS?

@media handheld and (min-width:20em) {

⋮ one or more rule sets…

}

You can use multiple expressions in a media query if you join them with the and

keyword. The following example applies the CSS if the output device is a

screen-based device with a width between 800 and 1280 pixels:

@import url(/style.css) screen and (min-width:800px)

 and (max-width:1280px);

You can also use multiple, comma-separated media queries in a single at-rule:

@import url(/style.css) screen and (color), projection and (color);

The comma acts like an “or” keyword, so the above example will apply the CSS to

color-screen or projection devices.

As you’ve seen in these examples, many of the media features can be prefixed with

min- or max- to express boundary constraints. These prefixes should be thought of

as “greater than or equal to” and “less than or equal to,” respectively. The W3C

chose to use these prefixes instead of a syntax involving < and > characters, due to

the special meaning those characters have in HTML and XML.

The Ultimate CSS Reference 16

Media features generally apply only for certain media types. It’s meaningless to

query color capabilities for "speech" media, or to specify a width in pixels for "tty"

media—these kinds of logical expressions will always evaluate to false.

The media features in Table 1.2 are listed in the latest W3C recommendation for

media queries, dated 6 June 2007.13

Table 1.2: Media Features

DescriptionMin/MaxValue Feature

number of bits per color componentyesintegercolor

number of entries in the color lookup
table

yesintegercolor-index

aspect ratio yesinteger/integerdevice-aspect-ratio

height of the output deviceyeslengthdevice-height

width of the output deviceyeslengthdevice-width

true for a grid-based devicenointegergrid

height of the rendering surface yeslengthheight

number of bits per pixel in a
monochrome frame buffer

yesintegermonochrome

resolution yesresolution
("dpi" or
"dpcm")

resolution

scanning process of "tv" media typesno"progressive"
or
"interlaced"

scan

width of the rendering surface yeslengthwidth

13 http://www.w3.org/TR/css3-mediaqueries/

http://www.w3.org/TR/css3-mediaqueries/

The device-width and device-height features refer to the dimensions of the output

device (that is, the screen size).

The width and height features, on the other hand, refer to the dimensions of the

rendering surface, which is the viewport (for example, the browser window) for

screen media, or the page box for print media.

Resolutions are specified using a number immediately followed by one of the units

dpi (dots per inch) or dpcm (dots per centimeter).

Aspect ratios are specified as the quotient of two integers representing width/height:

for example, 16/9 or 1280/1024.

Currently, support for media queries is limited. Opera 9 has partial support,14 as

W
hat Is CSS?

17What Is CSS?

does Safari 3. Support for media queries is also appearing in browsers for other

devices, such as Opera Mini 4, Opera for the Nintendo Wii,15 iPhone, and the Nokia

S60 browser. Apple suggests using media queries as a way of targeting the iPhone

browser,16 since, confusingly, that browser does not support the "handheld" media

type.

Standards Mode, Quirks Mode,
and Doctype Sniffing
Some of the early browser implementations of CSS were fraught with problems—they

only supported parts of the specification, and in some cases, the implementation

of certain CSS features didn’t comply with the specification.

Today’s browsers generally provide excellent support for the latest CSS specification,

even incorporating features that aren’t yet in the official specification, but will likely

appear in the next version.

Due to the implementation deficiencies in early browsers, many old style sheets

were written to work with the then-contemporary browsers rather than to comply

14 http://www.opera.com/docs/specs/css/

15 http://www.opera.com/docs/specs/?platform=wii#css

16 http://tinyurl.com/2tyr6z

http://www.opera.com/docs/specs/css/
http://www.opera.com/docs/specs/?platform=wii#css
http://tinyurl.com/2tyr6z
http://tinyurl.com/2tyr6z

The Ultimate CSS Reference 18

with the CSS specification. This presented a dilemma for browser vendors releasing

new versions of their products that had better support for the CSS standard. While

they wanted to do the right thing with properly written CSS, and display web pages

according to CSS standards, this had the potential to make a mess of millions of

existing web pages whose CSS didn’t comply with the CSS specification.

The solution was to have the browser make an educated guess as to whether the

current document seemed to be modern or old-school, and then choose the

appropriate rendering mode. The basis for this guesswork was the presence, or

absence, of an SGML document type declaration (or doctype declaration) in the

markup. A doctype declaration contains the name of the document’s root element,

and usually, a reference to the document type definition (DTD), which contains the

syntactic rules for the markup language used in the document. Web browsers had

so far ignored the doctype declaration, which was mainly intended for markup

validators.

The process by which a browser chooses a rendering mode based on the doctype

declaration is known as doctype sniffing (or doctype switching), and was first

implemented in Microsoft Internet Explorer 5 for Mac OS. Today, doctype sniffing

is also used in Opera (7 and later), Firefox and other Gecko-based browsers, Safari,

Internet Explorer 6 and 7, and Konqueror (3.2 and later).

If the browser decides that the document is modern, it’ll render it in standards

mode. This means that, as a rule, CSS is applied in accordance with the CSS2

specification.

If the browser decides that the document is old-school, it’ll render it in quirks mode.

This mode applies CSS in the quirky way that suited predecessors of that browser,

or even of other browsers. The exact implementations of quirks mode differ between

browsers.

Opera (7.5 and later), Firefox, and Safari also have a third mode, called almost

standards mode,17 in which the layout of images in table cells is implemented as

in quirks mode, rather than in accordance with the CSS2 specification. In every

17 http://developer.mozilla.org/en/docs/Gecko%27s_Almost_Standards_Mode

http://developer.mozilla.org/en/docs/Gecko%27s_Almost_Standards_Mode
http://developer.mozilla.org/en/docs/Gecko%27s_Almost_Standards_Mode

19What Is CSS?

other respect, this mode is equivalent to standards mode. Almost standards mode

was added so that the old-school method of aligning images split across table cells

is more likely to render as the authors intended, and not to fall apart. This mode

corresponds to standards mode in Internet Explorer 6 and 7, Internet Explorer 5 for

Mac OS and OS X, Konqueror, and Opera versions prior to 7.5. These browsers do

not implement vertical alignment in table cells in compliance with the CSS2

specification, so their standards mode is really an almost standards mode.

Doctype sniffing is only undertaken for documents served with a MIME type of

text/html. The specification of any XML MIME type, including

application/xhtml+xml, automatically triggers standards mode (see MIME Types

(p. 411) for more details).

How Does it Work?

So how does doctype sniffing work? Which declarations trigger standards mode,

quirks mode, and almost standards mode? The document type definition reference,

for HTML and XHTML, consists of the string PUBLIC followed by a formal public

identifier (FPI), optionally followed by a formal system identifier (FSI), which is

the URL for the DTD.

Here’s an example of a doctype declaration that contains both an FPI and an FSI:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

This example contains only the FPI:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

Doctype sniffing works by detecting which of these parts are present in the doctype

declaration. If an FPI is present, but an FSI isn’t, browsers generally choose quirks

mode, since this was the common way of writing doctype declarations in the old

days. Browsers also choose quirks mode if the doctype declaration is missing

altogether—which used to be very common—or is malformed.

W
hat Is CSS?

The Ultimate CSS Reference 20

If both an FPI and a correct FSI are present, browsers with two layout modes choose

their standards mode. Browsers with three layout modes will examine the DTD

reference before committing to a choice. Generally, the DTDs for HTML 4.0 Strict,

HTML 4.01 Strict, and XHTML 1.0 Strict trigger standards mode. The corresponding

Transitional DTDs trigger almost standards mode for a text/html MIME type.

Internet Explorer 6 uses a very primitive form of doctype sniffing, which presumes

that the doctype declaration is the very first line in the document. An SGML

comment before the doctype declaration will trigger quirks mode, as will an XML

declaration before an XHTML doctype—even XHTML 1.0 Strict. The following

declaration will trigger quirks mode in IE6 (but not IE7) if served as text/html:

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

For more detailed information about doctype sniffing, including a table of which

doctypes trigger specific rendering modes in different browsers, see

http://hsivonen.iki.fi/doctype/.

Summary
Using cascading style sheets is the recommended way to control the presentation

of web pages. It allows the presentation layer to remain separate from the content

and behavior layers, which makes site maintenance much easier and reduces

bandwidth usage.

One or more external style sheets can be attached to an HTML page via link elements

or @import rules. A page can also include internal style sheets within style elements.

XML pages can be linked to external style sheets via processing instructions. Finally,

styling can be specified for an HTML element via its style attribute, but this

approach isn’t recommended.

An external or internal style sheet can be applied for one or more output media.

http://hsivonen.iki.fi/doctype/

21 What Is CSS?

A style sheet or group of style sheets can be persistent, preferred, or alternative, and

chosen as such by the user through a browser that supports alternative style sheets.

Some browsers apply CSS rules in two or three different modes: standards mode,

almost standards mode, and quirks mode. The choice of rendering mode is made

through the process of doctype sniffing.

For all intents and purposes, the current CSS specification is CSS2.1. Some modern

browsers implement a few features from the CSS3 working drafts, but currently

those features cannot be relied upon for anything other than experimental use.

W
hat Is CSS?

Chapter 2
General Syntax and Nomenclature

In this section, we’ll describe the building blocks of a CSS style sheet and the correct

syntax for each part. We’ll also define the unavoidable jargon we’ll use throughout

this reference. When everyone uses the same term for the same thing, communication

is usually easier and less error prone.

CSS syntax is not rigid: whitespace can usually be added freely between tokens,

and line breaks have no semantic value.

CSS is case insensitive in all matters under its control. However, some things lie

outside the control of CSS and these may or may not be case sensitive, depending

on external factors such as markup language and operating system.

Element type names, for instance, are case insensitive for HTML but case sensitive

for XML (including XHTML served as XML). Font names, with the exception of the

generic font family CSS keywords, may be case sensitive on some operating systems.

G
eneral Syntax and
N

om
enclature

The Ultimate CSS Reference 24

Disambiguating the Nomenclature

In order to name the various items that make up CSS syntax, let’s consider the

example in Figure 2.1.

Figure 2.1: Sample CSS syntax

The example begins with a comment (p. 42):

/* A sample style sheet */

The comment is followed by two statements (p. 25). The first statement is an at-rule

(p. 25):

@import url(base.css);

The second statement is a rule set (p. 26):

h2 {

 color: #666;

 font-weight: bold;

}

The rule set consists of a selector (p. 26) (the text before the left curly brace, {) and

a declaration block (p. 28) (delimited with the curly braces, {}). The block contains

two declarations (p. 28) separated by semicolons:

 color: #666;

 font-weight: bold;

25General Syntax and Nomenclature

Each declaration includes a property name and a value, separated by a colon.

Statements
A CSS style sheet is composed from a list of statements. A statement is either an

at-rule (p. 25) or a rule set (p. 26). The following example has two statements; the

first is an at-rule that is delimited by the semicolon at the end of the first line, and

the second is a rule set that is delimited by the closing curly brace, }:

@import url(base.css);

h2 {

 color: #666;

 font-weight: bold;

}

At-rules
An at-rule is an instruction or directive to the CSS parser. It starts with an

at-keyword: an @ character followed by an identifier (p. 43). An at-rule can comprise

a block delimited by curly braces, {}, or text terminated by a semicolon, ;. An

at-rule’s syntax will dictate whether it needs a block or text—see At-rules Reference

(p. 47) for more information.

Parentheses, brackets, and braces must appear as matching pairs and can be nested

within the at-rule. Single and double quotes must also appear in matching pairs.

Here’s an example of an at-rule that requires a block—the @media (p. 51) at-rule:

@media print {

 body {

 font-size: 12pt;

 }

}

Here’s an example of an at-rule terminated by a semicolon—the @import (p. 49)

at-rule:

G
eneral Syntax and
N

om
enclature

The Ultimate CSS Reference 26

@import url(base.css);

Rule Sets
A rule set (also called a rule) comprises a selector (p. 26) followed by a declaration

block (p. 28); the rule set applies the declarations listed in the declaration block to

all elements matched by the selector.

Here’s an example of a rule set:

h2 {

 color: #666;

 font-weight: bold;

}

Selectors
A selector comprises every part of a rule set (p. 26) up to—but not including—the

left curly brace {. A selector is a pattern, and the declarations (p. 28) within the

block that follows the selector are applied to all the elements that match this pattern.

In the following example rule set, the selector is h2:

h2 {

 color: #666;

 font-weight: bold;

}

This selector—which is comprised of a single simple selector—will match all

elements of type h2 in an HTML document. A simple selector can either be an

element type selector (p. 62) or the universal selector (p. 60), (*), optionally followed

by attribute selectors (p. 67), ID selectors (p. 65), or pseudo-classes (p. 80).1 A

selector can comprise a number of simple selectors separated by combinators (p. 73),

1	 Note that in CSS3, simple selectors are defined slightly differently than they are in CSS2.1. See
Selector Reference (p. 59) for details.

27General Syntax and Nomenclature

but it can contain only one pseudo-element (p. 106), which must be appended to the

last simple selector in the chain.

Here’s a more complex selector:

h2+p.warning:first-line {

 color: #666;

 font-weight: bold;

}

This selector consists of two simple selectors separated by an adjacent sibling

combinator (p. 77) (the + character), and a pseudo-element (:first-line). The first

simple selector (h2) is a type selector. The second simple selector contains a type

selector (p) and an attribute selector (p. 67)—in this case, a special form of attribute

selector called a class selector (p. 63), which will match HTML class attributes

containing the word “warning.”

As such, the selector above would match the first line of text within any p element

that has a class attribute value of "warning" and is an adjacent sibling to an h2

element.

Finally, two or more selectors can be grouped, separated by commas (,); the

declaration block that follows applies to both selectors. Consider these two rules:

#main ol {

 margin-left: 2em;

}

#main ul {

 margin-left: 2em;

}

They can be grouped like this:

#main ol, #main ul {

 margin-left: 2em;

}

You can read about selectors in detail in the selector reference section (p. 59).

G
eneral Syntax and
N

om
enclature

The Ultimate CSS Reference 28

Declaration Blocks

Declaration blocks begin with a left curly brace, {, and end with a right curly brace,

}. They contain zero or more declarations (p. 28) separated by semicolons:

h2 {

 color: #666;

}

A declaration block is always preceded by a selector (p. 26). We can combine

multiple rules that have the same selector into a single rule. Consider these rules:

h2 {

 color: #666;

}

h2 {

 font-weight: bold;

}

They’re equivalent to the rule below:

h2 {

 color: #666;

 font-weight: bold;

}

Although the last semicolon within a declaration block is optional, it’s good practice

to include it, as it’ll help you avoid syntax errors in the future. As you start to add

declarations to a block, it’s all too easy to forget the semicolon.

Declarations, Properties, and Values
A declaration is made up of a property name and a value, separated by a colon;

whitespace characters can appear around any of these elements. A declaration must

appear within a declaration block (p. 28), like so:

h2 {

color: #666;

}

29General Syntax and Nomenclature

There’s a large collection of property names that we can use in our style rules.

Syntactically, they are in fact CSS identifiers (p. 43), and must be specified correctly,

otherwise the declaration will be ignored. Property values can be specified in various

forms, depending on the property in question—each property has its own syntactic

and semantic requirements and restrictions. Values can be expressed as keywords

(p. 29), strings (p. 37), colors (p. 33), numbers (p. 37), lengths (p. 29), percentages

(p. 32), and URIs (p. 38).

Keywords
Many CSS property values can be specified as keywords. A keyword is an identifier

(p. 43), and it mustn’t be surrounded by quotation marks. So the correct syntax is

background-color: yellow;, whereas background-color: "yellow"; is an error.

See the definition of each property for information about which keywords, if any,

it allows.

Lengths and Units
The value type for many CSS properties is specified as <length>.2 A length is a

measurement comprising a numeric value and a unit only—whitespace can’t appear

between the number and the unit.

The numeric value can be either an integer or a real number. If the numeric value

is 0, the unit can be omitted (after all, zero pixels is the same measurement as zero

millimeters).3 But if the value isn’t zero, the unit must be specified.4

The units in which length is measured can be either relative or absolute, but an

absolute unit is useful only if the physical properties of the output medium are

known.

2 http://www.w3.org/TR/CSS21/syndata.html#length-units
3 It could even be argued that the unit should be omitted if the number is 0.
4 The line-height property can take a non-zero, unit-less value, but it’s not a value of the type

<length>.

G
eneral Syntax and
N

om
enclature

http://www.w3.org/TR/CSS21/syndata.html#length-units

The Ultimate CSS Reference 30

Relative Units Explained

The three possible relative units are listed in Table 2.1.

Table 2.1: Relative Units

DescriptionUnit

the current font size em

the x-height of the current font ex

pixelspx

The em and ex units depend on the font size that’s applied to the element.

A measurement of 1em is defined as being equal to the font size, however that may

be defined. When we specify a font size in em, 1em is equal to the inherited font

size—that is, the size the text would have had if we hadn’t changed it. As such,

font-size:1.2em; makes the text 1.2 times larger than the parent element’s text.

This unit’s name is a centuries-old legacy from the typographic world, where an

M-square or “mutton square” was a blank, square type whose sides’ length was

equal to the width of an uppercase M—usually the widest character—in that font.

The ex unit is equal to the x-height of the current font, which is normally the height

of a lowercase x, as depicted in Figure 2.2. Interestingly, an x-height is defined even

for fonts that don’t include a lowercase x.

Figure 2.2: Font size and x-height

In CSS, pixels are considered to be a relative unit because they don’t correspond to

a fixed physical measure. The CSS2.1 specification provides a lengthy definition

http://www.w3.org/TR/CSS21/syndata.html#length-units

31 General Syntax and Nomenclature

of pixel measurements,5 but the bottom line is that a pixel is relative to the viewing

distance. A standard pixel is 0.26mm (1/96 inch) square.

On an LCD computer monitor, or similar device, a pixel is usually the smallest area

that can be rendered. On high-resolution output devices, such as laser printers or

photosetters, pixels must be rescaled by the user agent so that, for example, a

one-pixel border is approximately as wide on paper as it is on a computer screen.

As such, pixel measurements are relative to the device on which the document is

reproduced.

Note that px units must not be used for a tty media type (for instance, character-grid

devices).

Pixels and Accessibility
The classification of pixels as relative units has nothing to do with the concept of
relative units as it’s defined in the Web Content Accessibility Guidelines (WCAG)
1.0,6 where “relative” means that web page elements can scale easily to meet the
needs of the user—for example, changing the text size in the browser, or changing
the size of the browser window. In WCAG terms, pixels are absolute, as you can’t
change the size of a pixel from within your browser.

Absolute Units Explained

Table 2.2 identifies the five absolute units that are available to us.

Table 2.2: Absolute Units

G
eneral Syntax and
N

om
enclature

DescriptionUnit

millimeters mm

centimeters cm

inchesin

5 http://www.w3.org/TR/CSS21/syndata.html#length-units
6 http://www.w3.org/TR/WAI-WEBCONTENT/

http://www.w3.org/TR/CSS21/syndata.html#length-units
http://www.w3.org/TR/WAI-WEBCONTENT/
http://www.w3.org/TR/WAI-WEBCONTENT/

DescriptionUnit

pointspt

picaspc

The Ultimate CSS Reference 32

Millimeters and centimeters are defined in the SI standard.7 Inch measurements

are now used mainly in the United States. One inch measures 25.4mm.

A point is an old typographic measurement, but multiple standards were used for

points in print, and the Didot point used in continental Europe was slightly larger

than the point used in Britain and America. In CSS, one point is defined as 1/72

inch (0.353mm), just as it is in PostScript.

A pica is equal to 12 points, just as it is in typography, which translates into 1/6

inch or 4.23mm in CSS.

Physical (absolute) units shouldn’t normally be used for on-screen display. A font

size specified as 7pt may be readable (albeit barely) at nine pixels on a 96dpi

Windows system, but it will display at an illegible seven pixels on an older 72dpi

Mac system.

In a similar vein, pixels shouldn’t usually be used when you’re specifying styles

for print media. Although user agents are expected to rescale pixels if necessary,

pixels don’t make sense on high-resolution devices.

Percentages
A percentage is an integer, or a decimal number, followed by a percentage character

(%). Whitespace characters mustn’t appear between the number and the %. For

example, here’s a width declaration that uses a percentage value:

#example {

 width: 50%;

}

7 http://www.bipm.org/en/publications/brochure/

http://www.bipm.org/en/publications/brochure/

33General Syntax and Nomenclature

A percentage value is, by its nature, relative to something else. The interpretation

of percentages differs between CSS properties, so you’ll have to use the reference

to find the specific property you’re dealing with, and to identify what its stated

percentage value means. In some cases, the interpretation of percentage values can

be quite unexpected; for example, vertical padding refers to a percentage of the

width—not height—of the containing block.

Colors
Color values can be represented in several different ways in CSS.

Hexadecimal Notation

Hexadecimal RGB (red, green, blue) notation is perhaps the most common format.

It consists of a # character followed by three or six hexadecimal digits. When six

digits are provided, the first pair represents the red value, the second pair represents

the green value, and the last pair represents the blue value: #rrggbb. A value with

three digits represents the corresponding six-digit value where each digit occurs

twice; thus #09f is the same as #0099ff (red=00, green=99, blue=ff).

Decimal Notation

We can also write a color value with decimal functional notation—rgb(0, 160,

255) or rgb(0%, 63%, 100%)—where the order of the arguments is red, green, and

blue. Using the first form, 255 corresponds to 100%. Values outside the valid range

(0–255 or 0%–100%) are automatically changed to the corresponding limit.

CSS3 makes a few extra functional notations available:

■	 rgba(0, 160, 255, 0.2) for RGBA colors; the fourth argument is the alpha

opacity and accepts a value from 0 to 1

■	 hsl(240, 100%, 50%) for HSL colors (hue, saturation, luminosity)

■	 hsla(240, 100%, 50%, 0.2) for HSLA colors (hue, saturation, luminosity,

alpha)

G
eneral Syntax and
N

om
enclature

The Ultimate CSS Reference 34

At the time of writing, these three notations were supported only by the Gecko8 and

WebKit9 rendering engines.

Keywords

Colors can also be represented by the keywords listed in Table 2.3.

Table 2.3: Color Keywords

Color Value Keyword

#00ffffaqua

#000000black

#0000ffblue

#ff00fffuchsia

#808080gray

#008000green

#00ff00lime

#800000maroon

#000080navy

#808000olive

#ffa500orange (added in CSS 2.1)

#800080purple

#ff0000red

8 Gecko is used by Firefox, Mozilla, and Camino, among others.
9 WebKit is used by Safari.

Color Value Keyword

#c0c0c0silver

#008080teal

#ffffffwhite

#ffff00yellow

Color Keyword Compatibility
Support for color keywords differs between browsers so, to be on the safe side, it’s
best to use the numeric or functional notation. The use of keywords for colors is
also disallowed by the Web Content Accessibility Guidelines (WCAG) 1.0.10

35General Syntax and Nomenclature

Finally, you can use the keywords listed in Table 2.4 to specify system

colors—various colors that are used by the operating system and/or window manager,

and can be applied when you want to create a “native application” look and feel.

Table 2.4: System Colors

DescriptionKeyword

the desktop background color Background

the face color for 3D elementsButtonFace

the highlight color for 3D elementsButtonHighlight

the shadow color for 3D elementsButtonShadow

the text color on buttonsButtonText

the color of captions, scrollbar arrows, etc. CaptionText

G
eneral Syntax and
N

om
enclature

10 http://www.w3.org/TR/WCAG10-CSS-TECHS/#style-colors

http://www.w3.org/TR/WCAG10-CSS-TECHS/#style-colors

DescriptionKeyword

the color of disabled textGrayText

the color of selected items in a control Highlight

the text color in selected itemsHighlightText

the border color of an inactive window InactiveBorder

the caption color of an inactive windowInactiveCaption

the color of text in an inactive captionInactiveCaptionText

the background color in tooltips InfoBackground

the text color in tooltipsInfoText

the menu background color Menu

the menu text colorMenuText

the color of the scrollbar “trough”Scrollbar

the dark shadow color for 3D display elementsThreeDDarkShadow

the face color for 3D display elementsThreeDFace

the highlight color for 3D display elementsThreeDHighlight

the light shadow color for 3D display elementsThreeDLightShadow

the dark shadow color for 3D display elementsThreeDShadow

the window background color Window

the color of the window frame WindowFrame

The Ultimate CSS Reference 36

DescriptionKeyword

the color of text in windowsWindowText

37General Syntax and Nomenclature

Note that even though the keywords are case insensitive, they’re presented here as

they are in the CSS2.1 specification, for maximum readability.

System Color Keyword Compatibility
The support for these keywords is even less reliable than that provided for the
“regular” color keywords. You should test your document extensively—in different
browsers and different operating systems—if you use them.

Numbers
A number can be specified either as an integer or a real number (one that contains

a decimal point), and can have an initial or + to indicate its sign. Numbers can

only be specified in decimal notation. For example, here’s a line-height declaration

that uses a number value:

#example {
 line-height: 1.5;
}

Strings

G
eneral Syntax and
N

om
enclature

A string value must be enclosed in double or single quotes. So, to include a quote

inside a string, you’ll need to escape it with a backslash character, like so:

ol#breadcrumbs:before {

 content: "You are \"here\": ";

}

html {

 font-family: 'Grey\'s Bold',serif;

}

The Ultimate CSS Reference 38

Of course, it’s often easier to use the opposite quotation character around the

string—if you need a double quote inside the string, surround the whole string with

single quotes, and vice versa:

ol#breadcrumbs:before {

 content: 'You are "here": ';

}

html {

 font-family: "Grey's Bold",serif;

}

If you want a string to contain characters that can’t easily be typed from the keyboard,

characters that can’t be expressed in the style sheet’s character encoding, or

non-printable characters, you can represent those characters using CSS escape

notation (p. 43).

Note also that a string value in CSS can’t contain a literal new line. If you need to

include a new-line character inside a string value, use a character escape (\a).

URIs
URI values are expressed with a functional notation that, for historical reasons, is

named url.11 A URI is expressed using the following syntax: url(URI). For example,

here’s a background-image declaration that specifies the URI of an image file:

#example {

 background-image: url(images/bg.gif);

}

The argument for URI is a string that may be enclosed in quotes; if you choose to

use quotes, they may be double or single quotes.12 Certain characters appearing in

an unquoted URI value—whitespace characters, single and double quotes,

parentheses, and commas—must be escaped with a backslash. In some types of

11 In the beginning, web addresses were called Uniform Resource Locators (URL). Later, something
called Uniform Resource Name (URN) was added. A Uniform Resource Identifier (URI) is a URL
or a URN.

12 Some browsers, like Internet Explorer 5 for Mac, don’t support single quotes in url(URI) syntax.

39General Syntax and Nomenclature

URIs, you can also replace these characters with URI escape sequences; for example,

you can use %20 to replace a space character.

Relative URIs
Relative URIs are relative to the style sheet, not to the HTML document that links
to the style sheet.

Initial Values
The default value for a property, when it’s not specified explicitly or inherited, is

called the initial value. The initial value of each property is defined in the CSS

specification.

Browsers have user agent style sheets that define the default rendering of the various

HTML element types. In some cases, the rules in those built-in style sheets define

values other than the initial values from the CSS specification. For example, links

are usually underlined, even though the initial value for the text-decoration

property is none.

You can read more about these topics in The Cascade, Specificity, and Inheritance

(p. 117).

Shorthand Properties
Some properties can be combined into shorthand notation—a notation that allows

us to specify values for related properties in a single declaration.

Shorthand for Box Properties

One form of shorthand notation allows us to specify values for two, three, or four

sides of a box simultaneously, like this:

margin: 1em 2em 3em 4em;

That declaration is equivalent to these:

G
eneral Syntax and
N

om
enclature

The Ultimate CSS Reference 40

margin-top: 1em;

margin-right: 2em;

margin-bottom: 3em;

margin-left: 4em;

The TRouBLe Mnemonic
Note the order in which these properties occur in the shorthand notation. They
appear in a clockwise order, starting at the top: Top, Right, Bottom, Left.
Remembering this order keeps you out of TRouBLe.

This form of shorthand notation can take one, two, three, or four values. If four

values are specified, they’re assigned to the appropriate sides in TRouBLe order. If

only two or three values are specified, the “missing” side is assigned the same value

as the one opposite it. If only a single value is specified, it’s applied to all four sides.

Take a look at this declaration:

margin: 1em 2em 3em;

That’s equivalent to these:

margin-top: 1em;

margin-right: 2em;

margin-bottom: 3em;

margin-left: 2em; /* same as margin-right */

In the same vein, consider this declaration:

margin: 1em 2em;

It’s the same as these:

margin-top: 1em;

margin-right: 2em;

margin-bottom: 1em; /* same as margin-top */

margin-left: 2em; /* same as margin-right */

This form of shorthand notation is used for the properties: margin (p. 209), padding

(p. 218), border-width (p. 254), border-color (p. 249), and border-style (p. 251).

41 General Syntax and Nomenclature

Shorthand for Other Properties

A somewhat different form of shorthand notation allows us to specify a number of

related properties at once. For example, we can combine multiple background-related

properties into one background declaration:

background: #fff url(bg.png) no-repeat fixed right top;

This declaration is equivalent to the following:

background-color: #fff;

background-image: url(bg.png);

background-repeat: no-repeat;

background-attachment: fixed;

background-position: right top;

Unlike the shorthand for box-related properties, when we’re combining related

properties, the order of the values is usually not relevant. That said, be sure to check

each property for the required syntax.13

If a value is omitted, the initial value (p. 39) will be assigned to the corresponding

property. Look at this declaration:

background: url(bg.png);

It’s the same as these:

background-color: transparent; /* initial value */

background-image: url(bg.png);

background-repeat: repeat; /* initial value */

background-attachment: scroll; /* initial value */

background-position: 0% 0%; /* initial value */

Omitted values aren’t ignored, so attempts to mix shorthand and standard

declarations like the following are doomed to fail (they’re also likely to confuse

anyone who’s looking at the code):

G
eneral Syntax and

N

om
enclature

13 We prefer to use the order in the CSS2.1 specification.

The Ultimate CSS Reference 42

background-color: #fff;

background: url(bg.png);

The background color will not be white (#fff), since the first declaration provided

here is overwritten by the implicit declaration background-color: transparent; in

the shorthand property.

This form of shorthand notation is used by the properties: border (p. 255), border-top

(p. 226), border-right (p. 233), border-bottom (p. 240), border-left (p. 247), outline (p. 261),

background (p. 312), font (p. 325), and list-style (p. 290). See the relevant reference

pages for the syntax details of each property.

CSS Comments
In CSS, a comment starts with /* and ends with */. Comments can span multiple

lines, but may not be nested:

/* This is a single-line comment */

/* This is a comment that

 spans multiple lines */

According to the CSS2 specification,14 comments that appear between tokens won’t

have any effect on the styles’ rendering. In practice, however, we find comments

causing errors in some older browsers in certain situations.

Comment Syntax
The // comment syntax used in C++ is not allowed. Neither are SGML comments
that take the form <!---->, except in one situation: they may appear in internal
style sheets—style sheets placed within the HTML source using the <style> tag—in
order to hide the CSS statements from pre-HTML4 user agents. However, this use
of comments is now redundant and can be disregarded. See Linking CSS to a Web
Document (p. 5) for further information.

14 http://www.w3.org/TR/CSS21/syndata.html#comments

http://www.w3.org/TR/CSS21/syndata.html#comments

43General Syntax and Nomenclature

CSS Identifiers

CSS identifiers are the labels used in property (p. 28) names, keyword values (p. 29),

and at-rule (p. 25) names, as well as in element type names, classes, and IDs within

selectors (p. 26). In the following example, fieldset, border, and none are all CSS

identifiers:

fieldset {

border: none;

}

According to the CSS2 specification,15 they can contain the characters a to z and 0

to 9, ISO 10646 characters (equivalent to Unicode) U+00A1 and higher, the hyphen

(-), and the underscore (_); they can’t start with a digit, nor with a hyphen followed

by a digit. Identifiers can also contain escaped characters (p. 43).

CSS Escape Notation
If you need to use characters that aren’t easily inserted with a keyboard, or can’t be

represented through the style sheet’s character encoding, specify them in an external

style sheet using CSS Escape Notation. Representing escaped characters in CSS is

quite different from the process we use in HTML.

The character escape sequence consists of a backslash character (\) followed by

between one and six hexadecimal digits that represent a character code from the

ISO 10646 standard (which is equivalent to Unicode, for all intents and purposes).

Any character other than a hexadecimal digit will terminate the escape sequence.

If a character following the escape sequence is also a valid hexadecimal digit, you

must either include six digits in the escape, or use a whitespace character to

terminate the escape.

G
eneral Syntax and
N

om
enclature

15 http://www.w3.org/TR/CSS21/syndata.html#value-def-identifier

http://www.w3.org/TR/CSS21/syndata.html#value-def-identifier

The Ultimate CSS Reference 44

For example, if we wanted to output the string value "»back" (producing a chevron

immediately adjacent to the word “back”), we’d need to use either "\0000bbback"

or "\bb back" (0x00bb is the ISO 10646 code for the chevron character).

This also means that one whitespace character after an escape sequence will always

be ignored—even if it appears after an escape sequence that uses six digits. If you

want to include a whitespace character as part of the string, you’ll need to double

the whitespace.

Let’s modify our previous example. If we wanted to output the string value "»

back" (displaying a chevron, followed by a space, followed by the word “back”),

we’d need to use either "\0000bb back" or "\bb back". In both cases, two spaces

appear between the escape sequence and the word “back.”

CSS Syntax Errors
According to the CSS2.1 specification,16 a user agent should ignore the invalid parts

of a style sheet. In general, a user agent should ignore:

■	 a statement that’s an at-rule with an invalid at-keyword

■	 a statement that’s a rule set with an invalid selector

■	 a statement that’s a rule set with grouped selectors, one or more of which is

invalid

■	 a declaration with an invalid property name or value

■	 a declaration with an unsupported property or value

However, in practice, the behavior of browsers varies, either because of browser

bugs, or the incomplete implementation of CSS standards. See Workarounds, Filters,

and Hacks (p. 391) for some examples of inconsistent browser behavior.

16	 http://www.w3.org/TR/CSS21/syndata.html#parsing-errors

http://www.w3.org/TR/CSS21/syndata.html#parsing-errors

45General Syntax and Nomenclature

Summary

A CSS style sheet contains statements—rule sets and at-rules—as well as comments

delimited by /* and */.

A rule set, or rule, consists of a selector (or group of selectors) and a declaration

block delimited by curly braces. A declaration block contains zero or more

semicolon-separated declarations, each comprising a property, a colon separator,

and a value.

Each property has its own syntax requirements, and some properties have shorthand

equivalents.

Different properties take values of different types. Length is one of the most common

types; it’s made up of a number and a unit, but if the number is zero, the unit can

be omitted. Percentage values are relative to some aspect of the document or display,

and you need to look at the definition of each property to see how, if at all,

percentages apply.

Some properties accept special keyword values, which must not be enclosed in

quotes. String values, on the other hand, must be enclosed in single or double quotes.

URIs are expressed using the url() notation.

Color values can be expressed in a few different ways, each one providing a value

for the red, green, and blue channels. They can be expressed using a # character

followed by three or six hexadecimal digits, or via the rgb() notation, which requires

three comma-separated numerical values between 0 and 255, or three percentages.

CSS3 introduces even more methods for expressing color values.

Special characters can be specified using CSS escape notation—a backslash followed

by a hexadecimal value. A whitespace character after a character escape is ignored.

All keywords within the control of CSS are case insensitive, but other values may

be case sensitive, depending on the markup language and the operating system of

the web server. A CSS parser should ignore the invalid or unsupported parts of a

style sheet.

G
eneral Syntax and
N

om
enclature

Chapter 3
At-rules Reference
At-rules are instructions or directives to the CSS parser. They can be used for a

variety of purposes.

The @charset (p. 48) at-rule can be used to specify the character encoding of an

external style sheet. It must appear before anything else in the file.

The @import (p. 49) at-rule allows us to import one style sheet into another. All

@import at-rules must appear before any rules.

The @media (p. 51) at-rule lets us target rules to the media types we specify.

The @page (p. 52) at-rule can be used to specify margins for paged media. You can

set different margins for left- and right-hand pages when you’re printing double-sided

pages, as well as for the first page.

The @font-face (p. 54) at-rule allows us to specify custom fonts.

The @namespace (p. 55) at-rule in CSS3 lets us declare an XML namespace, as well

as an optional prefix with which that namespace can be specified.

At-rules Reference

The Ultimate CSS Reference 48

@charset

@charset "encoding";

We use the @charset at-rule to specify

the character encoding of an external

style sheet. The at-rule must be followed

by a quoted string value and a

semicolon; the string must contain a

valid encoding name from the IANA

registry.1

SPEC
CSS2

BROWSER SUPPORT
Op9.2+Saf3FF1.5+IE5.5+

FULLNONEFULLBUGGY

Example

This example indicates that the style sheet
will use the ISO-8859-15 character
encoding:

@charset "ISO-8859-15";

For obvious reasons, if it’s present, an

@charset rule must be the very first thing in the CSS file. The only item that can

precede it is a Unicode byte order mark (BOM).2

You’ll rarely need to use an @charset rule in your style sheets. A user agent can

deduce the character encoding of a CSS style sheet in four different ways, and if all

of those fail, it uses a default.

For an external style sheet, a user agent will look for the following items:

■	 a charset attribute in a Content-Type HTTP header (or similar) sent by the web

server

■	 a Unicode byte order mark, or an @charset at-rule

■	 a charset attribute specified in the <link> tag from which the HTML document

links to the style sheet

■	 the encoding of the referring document or style sheet

This list defines the items in order of descending priority, and the first one that’s

found will determine the style sheet’s encoding. If none are found, the user agent

will assume the character encoding is UTF-8.

1 http://www.iana.org/assignments/character-sets

2 http://en.wikipedia.org/wiki/Byte_Order_Mark

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets
http://en.wikipedia.org/wiki/Byte_Order_Mark

Using Special Characters
You can refer to characters that can’t be represented by the style sheet’s encoding
using CSS escape notation (p. 43).

49At-rules Reference

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullNoneNoneNoneFullFullBuggyBuggyBuggyBuggy

In Internet Explorer versions up to and including 7, an @charset rule will not fail

if the encoding is specified without quotes, even though it should.

In Firefox 1.0, an @charset rule will work only if it’s specified without quotes, on

which it should actually fail.

Other Relevant Stuff
CSS Escape Notation (p. 43)

@import

@import { URI | string } [media type,…] ;

The @import at-rule is a mechanism for

importing one style sheet into another.

It should be followed by a URI value

and a semicolon, but it’s possible to use

a string value instead of the URI value.

Where relative URIs are used, they’re

interpreted as being relative to the

importing style sheet.

You can also specify one or more media types to which the imported style sheet

applies—simply append a comma-separated list of media types to the URI.

Example

Here are examples of the most common
usage forms:

@import url("/css/main.css");
@import "local.css";

SPEC
CSS1

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLBUGGY

At-rules Reference

The Ultimate CSS Reference 50

Here’s an example of a media type specification:

@import url(/css/screen.css) screen, projection;

The @import rules in a style sheet must precede all rule sets. An @import rule that

follows one or more rule sets will be ignored. As such, the example below shows

an incorrect usage; because it appears after a rule set, the following @import rule

will be ignored:

html {

 background-color: #fff;

 color: #000;

}

/* The following rule will be ignored */

@import url("other.css");

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

The media type specification feature isn’t supported by Internet Explorer versions

up to and including 7. In the example above, IE would attempt to request the file

./url(/css/screen.css) screen, projection—that is, a file named

screen.css) screen, projection in a subdirectory named css in a subdirectory named

url(below the directory containing the importing style sheet.

Other Relevant Stuff
Linking CSS to a Web Document (p. 5)

51 At-rules Reference

@media

@media media type,… {

ruleset

}

You can use the @media at-rule to

specify that one or more rule sets in a

style sheet will apply only to certain

media types. The at-rule must be

followed by a comma-separated list of

media types and a block that contains

rules.

It’s up to you to decide whether you

prefer to use separate style sheets for

different media, or to use a single style

sheet with @media rules.

Example

This rule set will be applied only when the
document is printed or viewed in print
preview mode:

@media print {
 body {
 padding: 1in;
 border: 0.5pt solid #666;

 }
}

In the expanded example below, the first set of rules will be applied only for screen

and projection media (Opera uses the latter in its full-screen mode). The second set

of rules will be applied only when the document is printed or viewed in print

preview mode:

@media screen, projection {

 html {

 background: #fffef0;

 color: #300;

 }

 body {

 max-width: 35em;

 margin: 0 auto;

 }

}

@media print {

 html {

 background: #fff;

 color: #000;

 }

 body {

SPEC
CSS2

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLFULL

At-rules Reference

The Ultimate CSS Reference 52

padding: 1in;

 border: 0.5pt solid #666;

 }

}

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyFull

An @media rule won’t fail in Internet Explorer 6 or 7 if a media type is omitted,

though it should.

Other Relevant Stuff
Linking CSS to a Web Document (p. 5)

Media Queries (p. 14)

@page

@page [:left | :right | :first] {

margin ruleset

}

You can use the @page at-rule to specify

margin values for the page box in style

sheets for paged media such as the print

media type.

In its simplest form, the at-rule is

followed by a block of margin

declarations:

@page {

 margin: 1in 1.5in;

}

SPEC
CSS2

BROWSER SUPPORT
Op9.2+Saf3FF2IE7
FULLNONENONENONE

Example

This example sets default page margins:

@page {
 margin: 1in 1.5in;
}

53At-rules Reference

You can specify different margins for all left-hand pages, all right-hand pages, or

for the first page, by inserting a page selector between the at-rule and the block. The

page selector is one of three pseudo-classes. Let’s look at an example that shows

how these pseudo-classes can be used:

@page {

 margin: 2.5cm; /* default for all pages */

}

@page :left {

 margin-left: 5cm; /* left pages only */

}

@page :right {

 margin-right: 5cm; /* right pages only */

}

@page :first {

 margin-top: 8cm; /* extra top margin on the first page */

}

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullNoneNoneNoneNoneNoneNoneNoneNoneNone

This at-rule is currently only supported by Opera 9.2 and later versions.

At-rules Reference

The Ultimate CSS Reference 54

@font-face

@font-face {

font descriptors

}

The @font-face at-rule allows you to

define custom fonts. It was first defined

in the CSS2 specification, but was

removed from CSS2.1. Currently, it’s a

draft recommendation for CSS3. The

at-rule contains one or more property

declarations, like those in a regular CSS

rule set, which are called font

descriptors. You can specify up to 24

different properties, but it’s beyond the

scope of this reference to explain them

all—you can read about them at the

W3C Web Fonts page.3

The font descriptors allow you to define fonts, and to influence the browser’s

selection of fonts when no matching font is found on the client system. This matching

can be performed not only on the font name, but on many other font characteristics

as well.

Example

This at-rule declares the font family called
Example Font, which is used in the
statement that follows:

@font-face {
 font-family: "Example Font";
 src: url("http://www.example.com

➥ /fonts/example");
}
h1 {
 font-family: "Example Font",

➥ sans-serif;
}

In the simplest usage scenario, @font-face allows you to specify a font-family

name, and the URI to a source file for the font, which can be downloaded by the

user agent if needed. You can then use the font-family name in other font-family

declarations where required.

Compatibility

SPEC
CSS2, 3

BROWSER SUPPORT
Op9.2Saf3FF2IE5.5+
NONENONENONEPARTIAL

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneNoneNoneNoneNoneNoneNonePartial Partial Partial

3 http://www.w3.org/TR/css3-webfonts/

http://www.w3.org/TR/css3-webfonts/
http://www.w3.org/TR/css3-webfonts/

55At-rules Reference

Internet Explorer versions 5.5 and later offer a partial implementation for the

browser’s WEFT (Web Embedding Fonts Tool) technology,4 but this only works

with EOT (Embedded OpenType Font) files.

Some experimental support5 is provided for the @font-face at-rule in nightly builds

of WebKit.6

Other Relevant Stuff
font-family (p. 318)

sets the font family for text content

@namespace

@namespace [prefix] URI;

The @namespace at-rule declares an

XML namespace and, optionally, a

prefix with which we can refer to it.

@namespace rules must follow all

@charset and @import rules, and

precede all other at-rules and rule sets

in a style sheet.

The scope of an @namespace rule is the

style sheet in which it’s declared—it

doesn’t extend to imported style sheets.

If no prefix is specified in the

4

5 http://webkit.org/blog/124/downloadable-fonts/
6 Web Kit is used by Safari.

SPEC
CSS3

BROWSER SUPPORT
Op9.2+Saf3FF2+IE7

FULLNONEFULLNONE

Example

The first example below declares a default
namespace; the second declares that the
prefix svg can be used to refer to elements
from the SVG namespace,
"http://www.w3.org/2000/svg":

@namespace
"http://www.w3.org/1999/xhtml";
@namespace svg
"http://www.w3.org/2000/svg";

@namespace rule, the rule defines the default namespace.

http://www.microsoft.com/typography/web/embedding/weft3/

At-rules Reference

http://www.microsoft.com/typography/web/embedding/weft3/
http://webkit.org/blog/124/downloadable-fonts/

The Ultimate CSS Reference 56

If a prefix is specified, you can refer to elements in that namespace by prepending

the prefix and a vertical bar, |, to the element selector, like so:7

@namespace "http://www.w3.org/1999/xhtml";

@namespace foo "http://example.com/ns/foo";

table {

⋮ declarations

}

foo|bar {

⋮ declarations
}

In the example above, the table selector matches table elements in the XHTML

namespace, while the foo|bar selector matches bar elements in the namespace

referred to by the prefix foo.

Namespaces
The namespace URI is the most important component of a namespace declaration.
Consider this style sheet:

@namespace foo "http://example.com/ns/foo";
foo|bar {

⋮ declarations
}

The foo|bar selector in the above example would match the <xyz:bar>…</xyz:bar>
element in this markup fragment because the namespace URI in the markup matches
the namespace URI in the at-rule:

<abc xmlns:xyz="http://example.com/ns/foo">
 <xyz:bar>…</xyz:bar>
</abc>

However, it would not match the <foo:bar>…</foo:bar> element in this markup
fragment, since that element’s in another namespace (that is, the URI doesn’t match):

<abc xmlns:foo="http://example.com/ns/xyz">
 <foo:bar>…</foo:bar>
</abc>

7 It would have been more intuitive to use a colon separator than the vertical bar, but the colon
character is already used for other purposes in selectors—more about this in Pseudo-classes (p. 80).

Thus, it’s not the prefix, but the corresponding namespace URIs in the markup and
at-rule, that must match.

57At-rules Reference

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullNoneNoneNoneFullNoneNoneNoneNoneNone

This at-rule isn’t widely supported.

At-rules Reference

Chapter 4
Selector Reference
A selector is a pattern; it’s the part of a CSS rule that matches a set of elements in

an HTML or XML document. The declarations that appear in the block that follows

the selector are applied to all elements that match this pattern, unless they’re

overridden by another rule in the cascade (p. 117).

As is discussed briefly in Selectors (p. 26), a selector can contain a chain of one or

more simple selectors separated by combinators. A pseudo-element (p. 106)—for

example, :first-line—can also be included after the last simple selector in the

chain.

A simple selector contains either an element type selector (p. 62), such as h1, or

the universal selector (p. 60), *. The universal selector can be considered to be

implied (and can therefore be omitted) if it isn’t the only component of the simple

selector.

A simple selector can also contain class selectors (p. 63)—for example, .warning,

ID selectors (p. 65)—for example, #menu, attribute selectors (p. 67)—for example,

Selector Reference

The Ultimate CSS Reference 60

[type="submit"], and pseudo-classes (p. 80)—for example, :hover. These act like

modifiers on a type selector (or the universal selector), and qualify the selector, as

if to say “but only if …”

The CSS3 Difference
The terminology used in the CSS3 specification1 differs from that used for CSS2.
In CSS3, the term “simple selectors” is used to refer to the various components:
type selectors, the universal selector, attribute or ID selectors, and pseudo-classes.
The selector component that CSS2 calls a “simple selector” is referred to as “a
sequence of simple selectors” in CSS3. In this reference, we’ll use the CSS2
terminology, which should be familiar to most readers.

Universal Selector
* {

declaration block

}

The universal selector matches any

element type. It can be implied (and

therefore omitted) if it isn’t the only

component of the simple selector. The

two selector examples shown here are

equivalent:

*.warning {

⋮ declarations

}

.warning {

⋮ declarations
}

SPEC
CSS2

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

Example

This rule set will be applied to every
element in a document:

* {
 margin: 0;
 padding: 0;
}

1 http://www.w3.org/TR/css3-selectors/#changesFromCSS2

http://www.w3.org/TR/css3-selectors/#changesFromCSS2

61 Selector Reference

It’s important not to confuse the universal selector with a wildcard character—the

universal selector doesn’t match “zero or more elements.” Consider the following

HTML fragment:

<body>

 <div>

 <h1>The Universal Selector</h1>

 <p>We must emphasize the following:</p>

 It's not a wildcard.

 It matches elements regardless of type.

 This is an immediate child of the division.

 </div>

</body>

The selector div * em will match the following em elements:

■ “Universal” in the h1 element (* matches the <h1>)

■ “emphasize” in the p element (* matches the <p>)

■ “not” in the first li element (* matches the or the)

■ “type” in the second li element (* matches the or the)

However, it won’t match the immediate element, since that’s an immediate

child of the div element—there’s nothing between <div> and for the * to

match.

Compatibility

Selector Reference

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer versions up to and including 6 exhibit the star HTML selector

(p. 400) bug: selectors that should fail, don’t. A descendant selector, such as * html,

shouldn’t match any elements, because the html element is the top-most parent

element and, as such, it can’t be a descendant of any other element. However,

Internet Explorer versions 5.5 and 6 ignore the universal selector at the beginning

of this selector.

The Ultimate CSS Reference 62

When the universal selector is immediately adjacent to an element type selector,

Internet Explorer versions 6 and 7 will interpret the combination as a descendant

selector (p. 74) instead of failing as they should.

In Internet Explorer 6 and 7, this selector will also select some inappropriate SGML

elements such as the doctype declaration and comments.

In Opera 9.2, this selector will also match any recognized processing instructions.

Element Type Selector
E {

declaration block

}

SPEC
CSS1

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7+
FULLFULLFULLFULL

While the universal selector matches

any element, an element type selector

matches elements with the

corresponding element type name. Type

selectors are case insensitive in HTML

(including XHTML served as text/html),

but are case sensitive in XML (including

XHTML served as XML).

Compatibility

Example

Consider this example selector:

ul {
⋮ declarations

}

A type selector like the above ul matches
all the elements within an HTML or XML
document that are marked up as follows:

 …

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullPartial Partial

Internet Explorer versions up to and including 6 don’t support the abbr element,

and the type selector abbr is ignored by those browsers. However, Dean Edwards

has produced a simple workaround:2 if the "html" namespace prefix is used in the

2 http://dean.edwards.name/my/abbr-cadabra.html

http://dean.edwards.name/my/abbr-cadabra.html

selector html\:abbr, Internet Explorer 6 and earlier versions can be made to

recognize the element and apply the declarations. In the following example, we

group two element type selectors (see Selector Grouping (p. 72))—one for IE6, and

one for all other browsers that support the abbr element:

html\:abbr, abbr {
 cursor: help;
 font-style: italic;
}

SPEC
CSS1

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7+

FULLFULLFULLFULL

Class Selector
.className {

declaration block

Selector Reference
63Selector Reference

}

Selecting elements on the basis of their

class names is a very common technique

in CSS. The attribute selector syntax

[class~="warning"] is rather awkward,

but thankfully there’s a simpler and

shorter form for it: the class selector.

Here’s a simple example that selects all

elements with a class attribute that

contains the value "warning":

Example

The following selector will match all p
elements with a class attribute that
contains the value "intro":

p.intro {
⋮ declarations

}

.warning {

⋮ declarations

}

This example also illustrates the use of an implied universal selector—it’s equivalent

to *.warning. Note that whitespace characters can’t appear after the period, or

between an element type selector, or explicit universal selector, and the period. For

example, the following selector will match all p elements with a class attribute

that contains the value "warning":

The Ultimate CSS Reference 64

p.warning {

⋮ declarations

}

A simple selector may contain more than one attribute selector and/or class selector;

in such cases, the selector pattern matches elements whose attributes contain all

the specified components. Here’s an example:

div.foo.bar {

⋮ declarations

}

div.foo.bar[title^="Help"] {

⋮ declarations
}

The first example selector above matches div elements whose class attribute value

contains both the words "foo" and "bar". The second example selector matches

div elements whose class attribute values contains both the words "foo" and

"bar", and whose title attribute values begin with the string "Help".

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullBuggyBuggy

In Internet Explorer 6, the class selector doesn’t work if the class name starts with

a hyphen or an underscore.

In Internet Explorer up to and including version 6, only the last class selector is

honored; all others in a chain of class selectors are ignored. For example, a selector

like .x.y.z will match all elements with a class attribute that contains the value

"z", but will not restrict the match to elements that also have the class attribute

values "x" and "y", which it should.

In Internet Explorer versions up to and including 6, if an ID selector that’s combined

with a class selector is unmatched, all subsequent ID selectors that use the same ID

and are combined with a class selector, are also treated as unmatched.

SPEC
CSS1

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7+

FULLFULLFULLFULL

Example

This example selector matches any element
whose id attribute value is equal to
"breadcrumbs":

#breadcrumbs {
⋮ declarations

}

ID, Please!
By ID attribute, the CSS specification3 doesn’t necessarily refer to an attribute whose
name is id. An ID attribute is one whose type is declared as ID in the document
type definition (DTD), or similar, for the markup language. In HTML (and XHTML),
this selector matches the id attribute, but in XML it would apply to any attribute
for which a type of ID was specified.

Since attribute types are declared in a DTD or schema—information that user agents
don’t normally read—ID selectors shouldn’t be used for XML other than XHTML,
unless you know that user agents have built-in knowledge about ID attributes.

Selector Reference
65Selector Reference

ID Selector
#ID {

declaration block

}

An ID selector matches an element that

has a specific id attribute value. Since

id attributes must have unique values,

an ID selector can never match more

than one element in a document.

In its simplest form, an ID selector looks like this:

#navigation {

⋮ declarations

}

This selector matches any element whose id attribute value is equal to "navigation".

In this selector, which is equivalent to *#navigation, the universal selector is

implied. The universal selector is often omitted in cases like this.

3 http://www.w3.org/TR/CSS21/selector.html#id-selectors

http://www.w3.org/TR/CSS21/selector.html#id-selectors

The Ultimate CSS Reference 66

Of course, it’s possible to use a type selector with an ID selector, but it’s rarely

necessary, since an ID uniquely identifies an element. Here’s an example that only

matches an unordered list element with an id attribute value that’s equal to

"navigation":

ul#navigation {

⋮ declarations

}

Whitespace characters shouldn’t appear between the type selector and the ID selector.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullBuggyBuggy

In Internet Explorer 6, an ID selector is ignored unless it’s the last ID selector in the

simple selector.

In Internet Explorer versions up to and including 6, if an ID selector that’s combined

with a class selector is unmatched, all subsequent ID selectors that use the same ID

and are combined with a class selector, are also treated as unmatched.

SPEC
CSS2

BROWSER SUPPORT
Op9.2+Saf2+FF1+IE7+
BUGGYFULLFULLBUGGY

Attribute Selector
[{ attribute | attribute { = | |= | ~= } attribute

value }] {

declaration block

}

Example

This selector matches all input elements
with a type attribute that’s equal to
"submit" (in other words, submit buttons):

input[type="submit"] {
⋮ declarations

}

An attribute selector will match

elements on the basis of either the

presence of an attribute, or the exact or

partial match of an attribute value.

Attribute selectors were introduced in

CSS2, and CSS3 added a few more

(p. 71).

Attribute selectors are delimited by

Selector Reference
67Selector Reference

square brackets; the simplest form of an

attribute selector consists of an attribute name surrounded by square brackets:

[href] {

⋮ declarations

}

This example selector matches any element that has an href attribute. It also contains

an implied universal selector, and is equivalent to *[href].

Here’s another example:

a[href] {

⋮ declarations

}

This selector matches any a element that has an href attribute, so it matches a

hypertext link, but not a named anchor.

Attribute selectors can also specify a value, or a partial value, to match. The values

must be strings (p. 37), in which case they’re surrounded by single or double quotes,

or identifiers (p. 43), without quotes. All the examples below use strings.

Case Sensitivity
The value specified in an attribute selector is case sensitive if the attribute value in
the markup language is case sensitive. Thus, values for id and class attributes in
HTML are case sensitive, while values for lang and type attributes are not.

XHTML, when served as XML, is always case sensitive; see Differences Between
HTML and XHTML (p. 409) for more on this.

It’s not always easy to remember which HTML attributes are case sensitive and
which aren’t. It’s usually best to assume that everything is case sensitive, but don’t
rely on it!

The Ultimate CSS Reference 68

We can use the = operator to have an attribute selector match elements that have

specific values:

input[type="submit"] {

⋮ declarations

}

This selector matches any input element that has a type attribute with a value equal

to "submit".

Default Attributes
Attribute selectors can only match attributes and values that exist in the document
tree, and there’s no guarantee that a default value specified in a DTD (or similar)
can be matched. For instance, in HTML, the default value for a form element’s
method attribute is "get", but you can’t rely on a selector like form[method="get"]
to select a form element with the start tag <form action="comment.php">.

Attribute Selectors for IDs
Note that [id="foo"] isn’t equivalent to #foo. Although both selectors would match
the same element in HTML, there’s a significant difference between their levels of
specificity (p. 126).

We can use the |= operator to cause an attribute selector to match elements which

have an attribute containing a hyphenated list of words that begin with a specific

value:

[hreflang|="en"] {
⋮ declarations

}

This example selector matches any element that has an hreflang attribute containing

a value of "en", whether or not that value is followed by a hyphen and more

characters. In other words, it matches hreflang attribute values of "en", "en-US",

"en-GB", and so on. This selector syntax was intended to allow language subcode

matches.4

Hyphen or No Hyphen?
All supporting browsers allow a hyphen to appear in the value in a selector like
[hreflang|="en"]. It’s unclear whether or not this is illegal, because the CSS
specification doesn’t contains any guidelines to help us deal with this situation.

Selector Reference
69Selector Reference

We can use the ~= operator to make an attribute selector match elements that have

an attribute that contains a list of space-separated words, one of which is the

specified value:

[class~="warning"] {

⋮ declarations

}

This selector matches any HTML element with a class attribute that contains a

space-separated list of words, one of which is "warning". So it matches <p

class="warning"> and <strong class="important warning"> and <div

class="warning highlight">, but not <p class="my-warning"> or <ul

class="warnings">.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

BuggyFullFullBuggyFullFullFullBuggyNoneNone

4 See also the :lang pseudo-class (p. 89).

The Ultimate CSS Reference 70

Browsers differ in their treatment of minimized attributes in HTML. For example,

the following HTML input element has a minimized disabled attribute:

<input type="text" name="email" disabled>

The selector input[disabled="disabled"] should match the element above, and

represents the correct way to write the selector. However, most browsers fail to

match it correctly. In Firefox 2 and earlier versions, and Safari 2 and earlier versions,

the selector input[disabled=""] matches the element above. In Opera 9.2, the

selector input[disabled="true"] matches the element above. Internet Explorer 7

doesn’t seem to recognize attribute selectors for minimized attributes at all.

In Internet Explorer 7:

■	 If the closing square bracket of an attribute selector,], is immediately followed

by an element type selector, the rule is parsed as if there’s a descendant

combinator—that is, a space—between the selectors, instead of failing as it should.

■	 Some DOM attributes, such as className, are treated like HTML attributes.

Safari versions up to and including 3 will always ignore the case of HTML attribute

values, even for attributes that are, in fact, case sensitive.

Firefox versions up to and including 2, will ignore the case of some attributes that

should be compared in a case-sensitive manner: for example, the id and for

attributes.

SPEC
CSS3

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7
BUGGYFULLBUGGYNONE

CSS3 Attribute Selectors
[attribute { ^= | $= | *= } attribute value] {

declaration block

}

Example

This example will match a elements with
an href attribute that contains the string
"example.com":

a[href*="example.com"] {
⋮ declarations

}

CSS3 defines three more attribute

selector variations. These new selectors

give us the ability to make partial

matches to attribute values—we can

match strings at the start, end, or

anywhere within an attribute value.

We can use the ^= operator to cause an

attribute selector to match elements that

Selector Reference
71 Selector Reference

have an attribute containing a value that

starts with the specified value:

a[href^="http:"] {

⋮ declarations

}

This example matches a elements that have an href attribute value which starts

with the characters "http:".

Using the $= operator, an attribute selector can match elements that have an attribute

which contains a value ending with the specified value:

img[src$=".png"] {

⋮ declarations

}

This example matches img elements with a src attribute value that ends with the

characters ".png".

Finally, we can use the *= operator to make an attribute selector match elements

that have an attribute which contains the specified value:

The Ultimate CSS Reference 72

div[id*="foo"] {

⋮ declarations

}

This example matches div elements whose id attribute value contains the characters

"foo".

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

BuggyFullFullFullBuggyBuggyBuggyNoneNoneNone

Internet Explorer 7 doesn’t support the partial matching of attribute values.

Safari versions up to and including 3 will always ignore the case of HTML attribute

values, even for attributes that are, in fact, case sensitive.

Firefox versions up to and including 2, will ignore the case of some attributes that

should be compared in a case-sensitive manner: for example, the id and for

attributes.

Selector Grouping
We can group selectors using a comma (,) separator. The following declaration

block will apply to any element that matches either of the selectors in the group:

td, th {

⋮ declarations

}

We can think of the comma as a logical OR operator, but it’s important to remember

that each selector in a group is autonomous. A common beginner’s mistake is to

write groups like this:

#foo td, th {

⋮ declarations

}

73Selector Reference

A beginner might think that the above declaration block will be applied to all td

and th elements that are descendants of the element with an ID of "foo". However,

the selector group above is actually equivalent to this:

#foo td {

⋮ declarations

}

th {

⋮ declarations
}

To achieve the true goal, write the selector group as follows:

#foo td, #foo th {

⋮ declarations

}

Selector Reference

No Trailing Comma Needed
Don’t leave a comma after the last selector in the group!

Combinators
A selector can contain more than one simple selector. Between the simple selectors,

we must include a combinator—something that explains the relationship between

the selectors. There are three different combinators in CSS2, and one extra in CSS3;

when we use them, they change the nature of the selector to reflect one of the

following types:

■ descendant selector (p. 74)

■ child selector (p. 76)

■ adjacent sibling selector (p. 77)

■ general sibling selector (p. 79)

The Ultimate CSS Reference 74

Descendant Selector
E F {

declaration block

}

The descendant selector matches all

elements that are descendants of a

specified element. The first simple

selector within this selector represents

the ancestor element—a structurally

superior element, such as a parent

element, or the parent of a parent

element, and so on. The second simple

selector represents the descendant

element we’re trying to match. If you’re

a little unclear about the terms ancestor

SPEC
CSS1

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

Example

Take a look at this example of the
descendant selector in action:

ul li {
⋮ declarations

}

This selector matches all li elements that
are descendants of a ul element—that is,
every li element that has a ul element as
its ancestor.

element and descendant element, have

a look at CSS Layout and Formatting (p. 139) for a complete explanation.

The combinator we use in a descendant selector is a whitespace character: a space,

horizontal tab, carriage return, line feed, or form feed. Since whitespace characters

are allowed around all combinators, you can include more than one whitespace

character between the simple selectors in a descendant selector.

Consider the following HTML fragment:

 Item 1

 Sub-item 2A

 Sub-item 2B

We’ll try to match elements in the above fragment using the selector below:

75Selector Reference

ul li {

⋮ declarations

}

This descendant selector will match all four li elements in the example HTML,

because each of those elements has a ul element as its ancestor.

We can also use descendant selectors to match the li elements within the ol in the

example above:

ul * li {

⋮ declarations

}

ul * * li {

⋮ declarations
}

ul * ol li {

⋮ declarations
}

ul li * li {

⋮ declarations
}

ul ol li {

⋮ declarations
}

ul li li {

⋮ declarations
}

ul li ol li {

⋮ declarations
}

However, there’s no way we can use descendant selectors to match only the list

items in the unordered list. To do that, we’d need a child selector (p. 76).

Compatibility

Selector Reference

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

In Internet Explorer 5.5 and 6, this combinator doesn’t work after a :hover

pseudo-class (p. 86).

The Ultimate CSS Reference 76

In Internet Explorer 6 and 7, if there’s only a comment—without any additional

whitespace—between two simple selectors, that comment is incorrectly treated as

a descendant selector, when in fact it should fail.

Child Selector
E>F {

declaration block

}

This selector matches all elements that

are the immediate children of a

specified element. The combinator in a

child selector is a greater-than sign (>).

It may be surrounded by whitespace

characters, but if it is, Internet Explorer

5 on Windows will incorrectly treat it

as a descendant selector (p. 74). So the

best practice is to eschew whitespace

around this combinator.

Consider this HTML fragment:

Example

Here’s an example of the child selector at
work:

ul>li {
⋮ declarations

}

This selector matches all li elements that
are the immediate children of a ul
element—that is, all li elements that have
a ul element as a parent.

 Item 1

 Subitem 2A

 Subitem 2B

Let’s try to match elements in the above fragment with the selector below:

ul>li {

⋮ declarations

}

SPEC
CSS2

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7+
FULLFULLFULLBUGGY

77Selector Reference

The child selector above will only match the two li elements that are children of

the ul element. It will not match the subitems, because their parent is the ol element.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyNoneNone

In Internet Explorer 7, this selector fails if a comment appears between the

combinator and the simple selector that follows it.

If one of the simple selectors is missing, Internet Explorer 7 acts as if there were a

universal selector in its place, instead of failing as it should.

Selector Reference

Adjacent Sibling Selector
E+F {

declaration block

}

The adjacent sibling selector selects all

elements that are the adjacent siblings

of a specified element. Sibling elements

must have the same parent element, and

“adjacent” means “immediately

following,” so there can be no elements

between the sibling elements. The

combinator in an adjacent sibling

selector is a plus character (+), as shown in this example:

Example

This selector matches all p elements that
appear immediately after h2 elements:

h2+p {
⋮ declarations

}

h2+p {

⋮ declarations

}

Applying the above selector to this block of HTML may make things clearer:

SPEC
CSS2

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7+
BUGGYFULLFULLBUGGY

The Ultimate CSS Reference 78

<h2>Heading</h2>

<p>The selector above matches this paragraph.</p>

<p>The selector above does not match this paragraph.</p>

The first paragraph matches the adjacent sibling selector h2+p, because the p element

is an adjacent sibling to the h2 element. The second paragraph doesn’t match the

selector. Although it’s a sibling of the h2 element, it’s not adjacent to that element.

If we apply the above selector to the following HTML block, the paragraph isn’t

matched—it’s not a sibling to the heading, since they don’t have the same parent:

<h2>Heading</h2>

<div>

 <p>The selector above does not match this paragraph.</p>

</div>

If we apply the selector to the HTML block below, the paragraph is matched by the

selector even though it appears not to be adjacent to the heading:

<h2>Heading</h2>

Lorem ipsum dolor sit amet.

<p>The selector above matches this paragraph.</p>

The selector matches the paragraph in this case because the node between them is

a text node rather than an element node. So if you look at element nodes only, the

heading and the paragraph are adjacent siblings.

Element Nodes and Text Nodes
A browser builds an internal document structure, called the Document Object Model
(DOM), from a web page. This model consists of nodes of different types. The
relationship between the nodes can be visualized as an upside-down tree, which is
why the model is often referred to as the DOM tree.

The two main types of nodes in this tree are element nodes and text nodes. Element
nodes correspond to HTML elements, while text nodes correspond to the textual
contents of element nodes. For instance, a fragment like Important! will
create one element node for the em element, and that element node will contain a
text node with the text Important!.

See CSS Layout and Formatting (p. 139) for more information about the DOM.

79Selector Reference

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

BuggyFullFullFullFullFullFullBuggyNoneNone

In Internet Explorer 7, this selector fails if a comment appears between the

combinator and the simple selector that follows it.

If one of the simple selectors is missing, Internet Explorer 7 acts as if there were a

universal selector in its place, instead of failing as it should.

In Internet Explorer 6 and 7, this selector will also select some inappropriate SGML

elements such as the doctype declaration and comments.

In Opera 9.2, this selector will also match any recognized processing instructions.

Selector Reference

General Sibling Selector
E~F {

declaration block

}

The general sibling selector is available

in CSS3, and the combinator used in

this selector is a tilde character (~).

The selector matches elements that are

siblings of a given element. This

example will match a p element if it’s a

sibling of an h2 element:

Example

This selector matches all p elements that
are siblings to h2 elements:

h2~p {
⋮ declarations

}

h2~p {

⋮ declarations

}

The elements don’t have to be adjacent siblings, but they have to have the same

parent, and the h2 element has to occur before the p element in the document source.

Let’s apply the above selector to some more examples:

SPEC
CSS3

BROWSER SUPPORT
Op9.2+Saf3FF1+IE7+

FULLNONEFULLBUGGY

The Ultimate CSS Reference 80

<h2>Heading</h2>

<p>The selector above matches this paragraph.</p>

<p>The selector above matches this paragraph.</p>

Here, both paragraphs match the sibling selector h2~p, because the p elements are

siblings to the h2 element.

The paragraph below isn’t a sibling to the heading—they don’t have the same

parent—so our selector won’t match this paragraph:

<h2>Heading</h2>

<div>

 <p>The selector above does not match this paragraph.</p>

</div>

Only the second paragraph above is matched by the sibling selector h2~p—even

though they’re siblings—because the first p element occurs before the h2 element:

<p>The selector above does not match this paragraph.</p>

<h2>Heading</h2>

<p>The selector above matches this paragraph.</p>

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullNoneNoneNoneFullFullFullBuggyNoneNone

In Internet Explorer 7, this selector fails if a comment appears between the

combinator and the simple selector that follows it.

If one of the simple selectors is missing, Internet Explorer 7 acts as if there were a

universal selector in its place, instead of failing as it should.

Pseudo-classes
A pseudo-class is similar to a class in HTML, but it’s not specified explicitly in the

markup. Some pseudo-classes are dynamic—they’re applied as a result of user

interaction with the document.

81 Selector Reference

A pseudo-class starts with a colon (:). No whitespace may appear between a type

selector or universal selector and the colon, nor can whitespace appear after the

colon.

CSS1 introduced the :link (p. 83), :visited (p. 84), and :active (p. 85)

pseudo-classes, but only for the HTML a element. These pseudo-classes represented

the state of links—unvisited, visited, or currently being selected—in a web page

document. In CSS1, all three pseudo-classes were mutually exclusive.

CSS2 expanded the range of pseudo-classes and ensured that they could be applied

to any element. :link and :visited now apply to any element defined as a link in

the document language. While they remain mutually exclusive, the :active

pseudo-class now joins :hover (p. 86) and :focus (p. 87) in the group of dynamic

pseudo-classes. The :hover pseudo-class matches elements that are being designated

by a pointing device (for example, elements that the user’s hovering the cursor over);

:activematches any element that’s being activated by the user; and :focusmatches

any element that is currently in focus (that is, accepting input).

CSS2 also introduced the :lang (p. 89) pseudo-class to allow an element to be

matched on the basis of its language, and the :first-child (p. 88) pseudo-class

to match an element that’s the first child element of its parent.

CSS3 promises an even greater range of powerful pseudo-classes (p. 90).

Remember that pseudo-classes, like ID selectors (p. 65) and attribute selectors

(p. 67), act like modifiers on type selectors (p. 62) and the universal selector (p. 60):

they specify additional constraints for the selector pattern, but they don’t specify

other elements. For instance, the selector li:first-child matches a list item that’s

the first child of its parent; it doesn’t match the first child of a list item.

A simple selector can contain more than one pseudo-class if the pseudo-classes

aren’t mutually exclusive. For example, the selectors a:link:hover and

a:visited:hover are valid, but a:link:visited isn’t because :link and :visited

are mutually exclusive. An element is either an unvisited link or a visited link.

Selector Reference

The Ultimate CSS Reference 82

The order of declaration is very important for the dynamic pseudo-classes :hover,

:focus, and :active, depending on what you wish to achieve. The most commonly

desired behavior for links is as follows:

a:link {

⋮	 declarations

}

a:visited {

⋮	 declarations
}

a:focus {

⋮	 declarations
}

a:hover {

⋮	 declarations
}

a:active {

⋮	 declarations
}

Dynamic Pseudo-class Mnemonics
Several mnemonics have been devised to help us remember this order, including
“LoVe Frogs HAppy,” “Las Vegas Fights Hell’s Angels,” and—for the Star Wars
fans—“Lord Vader, Former Handle Anakin.”

The :link and :visited pseudo-classes should generally come first.5 Next should

be :focus and :hover—they’re specified now so that they override and apply to

both visited and unvisited links. If :focus precedes :hover, the hover effect will

apply to links with keyboard input focus. The :active pseudo-class should always

come last, since we usually want to indicate clearly any links that have been

activated.

This isn’t the only useful order, nor is it in any way the “right” order. The order in

which you specify your pseudo-classes will depend on the effects you want to show

with different combinations of states. It’s possible, for instance, that you might want

to have different hover or focus effects on visited and unvisited links. In that case,

you could combine pseudo-classes: a:link:hover.

5	 For a discussion about the pros and cons of different pseudo-class orders, see

http://meyerweb.com/eric/thoughts/2007/06/11/who-ordered-the-link-states/.

http://meyerweb.com/eric/thoughts/2007/06/11/who-ordered-the-link-states/

83Selector Reference

If you want to apply special styling to the hover state of a link that also has keyboard

input focus, use a:focus:hover.

:link

:link {

declaration block

}

This pseudo-class matches link

elements that are determined to be

unvisited.

In CSS1, this pseudo-class applied only

to a elements that had an href attribute

(that is, a hypertext link). In CSS2, the

document language can define elements

as hyperlink anchors. It’s up to the user

agent to decide which links it considers to be visited and unvisited.

Example

This example will set the font color of all
unvisited HTML links to #cccccc:

a:link {
 color: #cccccc;
}

The two pseudo-classes :link and :visited are mutually exclusive: a link is either

visited or unvisited. As such, a selector like a:link:visited should never match

any element.

Compatibility

SPEC
CSS1

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7+

FULLFULLFULLFULL

Selector Reference

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullBuggyBuggy

Neither Internet Explorer 5.5 nor 6 supports the chaining of pseudo-classes; only

the last pseudo-class is honored in these browsers.

The Ultimate CSS Reference 84

:visited

:visited {

declaration block

}

This pseudo-class matches link

elements that are determined to have

been visited.

In CSS1, this pseudo-class applied only

to a elements that had an href attribute

(that is, a hypertext link). In CSS2, the

document language can define elements

as hyperlink anchors. It’s up to the user

agent to decide which links it considers to be visited and unvisited.

Example

This rule will set the font color of all
visited HTML links to #cccccc:

a:visited {
 color: #cccccc;
}

The two pseudo-classes :link and :visited are mutually exclusive: a link is either

visited or unvisited. As such, a selector like a:link:visited should never match

any element.

Compatibility

SPEC
CSS1

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7+
FULLFULLFULLFULL

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullBuggyBuggy

Neither Internet Explorer 5.5 nor 6 supports the chaining of pseudo-classes; only

the last pseudo-class is honored in these browsers.

SPEC
CSS1

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLBUGGY

:active
:active {

declaration block

}

Example

This rule will set the font color of an active
HTML link to #cccccc:

a:active {
 color: #cccccc;
}

This pseudo-class matches any element

that’s in the process of being activated.

It would apply, for instance, for the

duration of a mouse-click on a link,

from the point at which the mouse

button’s pressed down until the point

at which it’s released again. The

pseudo-class does not signify a link to

Selector Reference
85Selector Reference

the active, or current, page—that’s a common misconception among CSS beginners.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer 5.5 and 6 incorrectly apply this pseudo-class to links that have

keyboard input focus—a state that should be matched by :focus, which those

browsers do not support.

Internet Explorer versions up to and including 7:

■ Apply :active only to HTML a elements that have an href attribute.

■ Ignore :active unless it’s the last part of a pseudo-class chain.

The Ultimate CSS Reference 86

:hover

:hover {

declaration block

}

The :hover pseudo-class matches any

element that’s being designated by a

pointing device. The term designated

refers to the process during which the

cursor is hovered over the box generated

by the element.

Compatibility

SPEC
CSS2

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7+
FULLFULLFULLFULL

Example

This rule will apply a border to any img
element over which the cursor is hovered:

img:hover {
 border: 5px solid #F2F2F2;
}

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullBuggyBuggy

In Internet Explorer versions up to and including 6:

■	 :hover is applied only to HTML a elements that have an href attribute.

■	 :hover is counted as two classes/pseudo-classes in the specificity calculation.

■	 :hover is ignored if it’s not in the last simple selector.

Neither Internet Explorer 5.5 nor 6 supports the chaining of pseudo-classes; only

the last pseudo-class is honored in these browsers.

In Internet Explorer 7:

■	 The element sometimes remains in the hover state if the cursor is moved from

the element while the mouse button is pressed; the hover state sometimes doesn’t

apply when it should.

■	 :hover doesn’t match elements with negative z-index property values.

SPEC
CSS2

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7

FULLFULLFULLNONE

Example

This rule applies a border around any text
textarea element that has focus:

textarea:focus {
 border: 2px solid blue;
}

Selector Reference
87Selector Reference

:focus

:focus {

declaration block

}

This pseudo-class matches any element

that has keyboard input focus. Keyboard

input focus describes any element that’s

ready to receive user input. It can apply

to a form control, for instance, or to a

link if the user navigates using the

keyboard.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullNoneNoneNone

Internet Explorer 7 and earlier versions don’t support this pseudo-class; however,

Internet Explorer 5.5 and 6 incorrectly apply the pseudo-class :active to links that

have keyboard input focus—a state that should be matched by this pseudo-class.

The Ultimate CSS Reference 88

:first-child

:first-child {

declaration block

}

This pseudo-class matches an element

only if it’s the first child element of its

parent element. For instance,

li:first-child matches the first list

item in an ol or ul element. It doesn’t

match the first child of a list item.7

For example, let’s take the CSS selector

mentioned above:

Example

This example selector matches the first list
item in an ol or ul element:

li:first-child {
⋮ declarations

}

li:first-child {

⋮ declarations

}

And let’s apply it to the following markup:

 This item matches the selector li:first-child.

 This item does not match that selector.

 Neither does this one.

Only the first list item element is matched.

Note that this pseudo-class only applies to elements—it doesn’t apply to anonymous

boxes (p. 164) generated for text.

Compatibility

SPEC
CSS1

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7+
BUGGYBUGGYBUGGYBUGGY

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

BuggyBuggyBuggyBuggyBuggyBuggyBuggyBuggyNoneNone

7 To perform that match, you can use li>*:first-child.

In Internet Explorer 7 some SGML constructs, such as comments, are counted as

elements.

Internet Explorer 7, Firefox versions up to and including 2, Safari versions up to

and including 3, and Opera 9.2 continue to select an element as the first child even

when another element is dynamically inserted before it.

Internet Explorer 7 and Firefox select the first SGML construct on the page (usually

the doctype), even though it’s not a child of another element.

Opera 9.2 selects the root element, html, even though it isn’t a child of another

element.

Selector Reference
89Selector Reference

:lang(C)

:lang(language code) {

declaration block

}

If you specify a language using this

pseudo-class, it’ll match any element

for which the same language is

specified. The argument is matched in

a similar way to the |= operator in

attribute selectors (p. 67)—it can be an

exact match, or a match to a

hyphen-separated substring.

The document language specifies how

the language of an element is set. In HTML, the language doesn’t have to be set

explicitly on the element—it can be inherited. As such, this pseudo-class differs

from the [lang|=xx] attribute selector, which only matches elements that have a

lang attribute.

Example

The following rule set will be applied to
elements whose language specification is
"fr" (French), "fr-be" (French/Belgium),
"fr-ca" (French/Canada), and so on:

:lang(fr) {
⋮ declarations

}

SPEC
CSS2

BROWSER SUPPORT
Op9.2+Saf3+FF1+IE7

FULLBUGGYFULLNONE

The Ultimate CSS Reference 90

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullBuggyNoneNoneFullFullFullNoneNoneNone

In Safari 3, this selector only matches elements on which the attribute is set

explicitly—not those for which it’s inherited.

Other Relevant Stuff
Attribute Selector (p. 67)

selects elements based on attribute values

CSS3 Pseudo-classes
CSS3 provides many more pseudo-classes than CSS2. Though browser support for

them is varied, it is improving.

:nth-child(N)

:nth-child({ number expression | odd | even }) {

declaration block

}

This pseudo-class matches elements on

the basis of their positions within a

parent element’s list of child elements.

The pseudo-class accepts an argument,

N, which can be a keyword, a number,

or a number expression of the form

an+b. For more information, see

Understanding :nth-child Pseudo-class

Expressions (p. 95).

Example

This example selector will match
odd-numbered table rows:

tr:nth-child(odd) {
⋮ declarations

}

If N is a number or a number expression, N matches elements that are preceded by

N siblings in the document tree.

SPEC
CSS3

BROWSER SUPPORT
Op9.2Saf3FF2IE7
NONENONENONENONE

91 Selector Reference

The following example selectors are equivalent, and will match odd-numbered table

rows:

tr:nth-child(2n+1) {

⋮ declarations

}

tr:nth-child(odd) {

⋮ declarations
}

This example selector will match the first three rows of any table:

tr:nth-child(-n+3) {

⋮ declarations

}

This example selector will match any paragraph that’s the first child element of its

parent element:

p:nth-child(1) {

⋮ declarations

}

This is, of course, equivalent to the selector p:first-child (p. 88).

Compatibility

Selector Reference

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneNoneNoneNoneNoneNoneNoneNoneNoneNone

This pseudo-class is currently supported only by the Konqueror web browser.8

8 http://www.konqueror.org/

http://www.konqueror.org/

The Ultimate CSS Reference 92

:nth-last-child(N)

:nth-last-child({ number expression | odd | even })

{

declaration block

}

This pseudo-class matches elements on

the basis of their positions within a

parent element’s list of child elements.

The pseudo-class accepts an argument,

N, which can be a keyword, a number,

or a number expression of the form

an+b. For more information, see

Understanding :nth-child Pseudo-class

Expressions (p. 95).

Example

This example selector will match the last
row of any table:

tr:nth-last-child(1) {
⋮ declarations

}

If N is a number or a number expression, N matches elements that are followed by

N siblings in the document tree.

This example selector will match the last four list items in any list, be it ordered or

unordered:

li:nth-last-child(-n+4) {

⋮ declarations

}

This selector will match any paragraph that’s the last child element of its parent

element:

p:nth-last-child(1) {

⋮ declarations

}

This is, of course, equivalent to the selector p:last-child (p. 98).

SPEC
CSS3

BROWSER SUPPORT
Op9.2Saf3FF2IE7
NONENONENONENONE

93Selector Reference

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneNoneNoneNoneNoneNoneNoneNoneNoneNone

This pseudo-class is currently supported only by the Konqueror web browser.9

Selector Reference

:nth-of-type(N)

:nth-of-type({ number expression | odd | even })

{

declaration block

}

This pseudo-class matches elements on

the basis of their positions within a

parent element’s list of child elements

of the same type. This pseudo-class

accepts an argument, N, which can be a

keyword, a number, or a number

expression of the form an+b. For more

information, see Understanding

:nth-child Pseudo-class Expressions (p. 95).

Example

The following example selector matches
the first child paragraph in a div element:

div>p:nth-of-type(1) {
⋮ declarations

}

If N is a number or a number expression, N matches elements that are preceded by

N siblings with the same element name in the document tree.

The following example selector matches the second, fifth, eighth, and so on,

paragraphs in a div element, ignoring any children that aren’t paragraphs:

div>p:nth-of-type(3n-1) {

⋮ declarations

}

SPEC
CSS3

BROWSER SUPPORT
Op9.2Saf3FF2IE7
NONENONENONENONE

9 http://www.konqueror.org/

http://www.konqueror.org/

The Ultimate CSS Reference 94

The following example selectors will allow the application of different CSS styles

to the odd- and even-numbered image elements that are children of the element

whose id attribute value matches "gallery":

#gallery>img:nth-of-type(odd) {

⋮ declarations

}

#gallery>img:nth-of-type(even) {

⋮ declarations
}

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneNoneNoneNoneNoneNoneNoneNoneNoneNone

This pseudo-class is currently supported only by the Konqueror web browser.10

10 http://www.konqueror.org/

http://www.konqueror.org/

95Selector Reference
Selector Reference

:nth-last-of-type(N)

:nth-last-of-type({ number expression | odd |

even }) {

declaration block

}

This pseudo-class matches elements on

the basis of their positions within a

parent element’s list of child elements

of the same type. This pseudo-class

accepts an argument, N, which can be a

keyword, a number, or a number

expression of the form an+b. For more

information, see Understanding

:nth-child Pseudo-class Expressions

(p. 95).

If N is a number or a number expression,

N will match elements that are followed

by N siblings with the same element

name in the document tree.

Example

The following example selector will match
the last three image elements that are
children of the element whose id attribute
value matches "gallery":

#gallery>img:nth-of-type(-n+3) {
⋮ declarations

}

The following example selector matches
the penultimate term in a definition list:

dt:nth-last-of-type(2) {
⋮ declarations

}

Compatibility

SPEC
CSS3

BROWSER SUPPORT
Op9.2Saf3FF2IE7
NONENONENONENONE

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneNoneNoneNoneNoneNoneNoneNoneNoneNone

This pseudo-class is currently supported only by the Konqueror web browser.11

Understanding :nth-child Pseudo-class Expressions

CSS3 provides four powerful pseudo-classes that allow the CSS designer to select

multiple elements according to their positions in a document tree. Using these

11 http://www.konqueror.org/

http://www.konqueror.org/

The Ultimate CSS Reference 96

pseudo-classes can be a little confusing at first, but it’s easy once you get the hang

of it. The pseudo-classes are:

■ :nth-child(N) (p. 90)

■ :nth-last-child(N) (p. 92)

■ :nth-of-type(N) (p. 93)

■ :nth-last-of-type(N) (p. 95)

The argument, N, can be a keyword, a number, or a number expression of the form

an+b.

These pseudo-classes accept the keywords odd, for selecting odd-numbered elements,

and even, for selecting even-numbered elements.

If the argument N is a number, it represents the ordinal position of the selected

element. For example, if the argument is 5, the fifth element will be selected.

The argument N can also be given as an+b, where a and b are integers (for example,

3n+1).

In that expression, the number b represents the ordinal position of the first element

that we want to match, and the number a represents the ordinal number of every

element we want to match after that. So our example expression 3n+1 will match

the first element, and every third element after that: the first, fourth, seventh, tenth,

and so on. The expression 4n+6 will match the sixth element and every fourth

element after that: the sixth, tenth, fourteenth, and so on. The keyword value odd

is equivalent to the expression 2n+1.

If a and b are equal, or if b is zero, b can be omitted. For example, the expressions

3n+3 and 3n+0 are equivalent to 3n—they refer to every third element. The keyword

value even is equivalent to the expression 2n.

If a is equal to 1, it can be omitted. So, for example, 1n+3 can be written as n+3. If

a is zero, which indicates a non-repeating pattern, only the element b is required

to indicate the ordinal position of the single element we want to match. For example,

the expression 0n+5 is equivalent to 5, and as we saw above, it’ll match the fifth

element.

97Selector Reference

Both a and b can be negative, but elements will only be matched if N has a positive

value. If b is negative, replace the + sign with a - sign.

If your head’s spinning by now, you’re not alone, but hopefully Table 4.1 will help

put things into perspective. The expression represents a linear number set that’s

used to match elements. Thus, the first column of the table represents values for n,

and the other columns display the results (for N) of various example expressions.

The expression will match if the result is positive and an element exists in that

position within the document tree.

Table 4.1: Result Sets for Pseudo-class Expressions

-n+35n-24n4n+44n+12n+1n

3--4110

2348531

18812952

-1312161373

-1816201794

-23202421 11 5

Selector Reference

Thus the expression 4n+1 will match the first, fifth, ninth, thirteenth, seventeenth,

twenty-first, and so on, elements if they exist, while the expression -n+3 will match

the third, second, and first elements only.

The difference, then, between the nth- and nth-last- pseudo-classes is that nth-

pseudo-classes count from the top of the document tree down—they select elements

that have N siblings before them; meanwhile, the nth-last- pseudo-classes count

from the bottom up—they select elements that have N siblings after them.

The Ultimate CSS Reference 98

:last-child

:last-child {

declaration block

}

This pseudo-class is analogous to the

:first-child pseudo-class (p. 88) that

was included in CSS2. It matches an

element that’s the last child element of

its parent element, and as such, the

pseudo-class is equivalent to

:nth-last-child(1) (p. 92).

Compatibility

SPEC
CSS3

BROWSER SUPPORT
Op9.2Saf1.3+FF1+IE7
NONEBUGGYBUGGYNONE

Example

This selector will match any paragraph
that’s the last child element of its parent
element:

p:last-child {
⋮ declarations

}

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneBuggyBuggyBuggyBuggyBuggyBuggyNoneNoneNone

In Firefox versions up to and including 2, this selector continues to select the same

element even after another element is dynamically inserted before it.

In Safari versions up to and including 3, this selector will match all elements that

are child elements—not just the last child element.

SPEC
CSS3

BROWSER SUPPORT
Op9.2Saf3+FF2IE7
NONEBUGGYNONENONE

Example

This selector matches the first p element
that’s a child of a div element:

div>p:first-of-type {
⋮ declarations

}

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneBuggyNoneNoneNoneNoneNoneNoneNoneNone

In Safari 3, this selector continues to select the same element even after another

element of the same type is dynamically inserted before it.

Selector Reference
99Selector Reference

:first-of-type

:first-of-type {

declaration block

}

This pseudo-class matches the first

child element of the specified element

type, and is equivalent to

:nth-of-type(1) (p. 93).

Compatibility

:last-of-type

:last-of-type {

declaration block

}

This pseudo-class matches the last child

element of the specified element type,

and is equivalent to

:nth-last-of-type(1) (p. 95).

SPEC
CSS3

BROWSER SUPPORT
Op9.2Saf3+FF2IE7
NONEBUGGYNONENONE

Example

This selector matches the last p element
that’s a child of a div element:

div>p:last-of-type {
⋮ declarations

}

The Ultimate CSS Reference 100

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneBuggyNoneNoneNoneNoneNoneNoneNoneNone

In Safari 3, this selector will match all siblings of the same type.

:only-child

:only-child {

declaration block

}

This pseudo-class matches an element

if it’s the only child element of its

parent.

Compatibility

SPEC
CSS3

BROWSER SUPPORT
Op9.2Saf1.3+FF1.5+IE7
NONEBUGGYBUGGYNONE

Example

The following selector will match a list
item element if it’s the only list item in its
parent ol or ul element:

li:only-child {
⋮ declarations

}

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneBuggyBuggyBuggyBuggyBuggyNoneNoneNoneNone

In Firefox 1.5 and 2, this selector will continue to match an element even after

sibling elements are inserted dynamically before or after it.

In Safari versions up to and including 3, this selector behaves exactly like

:first-child.

SPEC
CSS1

BROWSER SUPPORT
Op9.2Saf3FF2IE7
NONENONENONENONE

Example

This selector will match an img element
that’s the only child img element of its
parent element:

img:only-of-type {
⋮ declarations

}

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneNoneNoneNoneNoneNoneNoneNoneNoneNone

This pseudo-class is currently supported only by the Konqueror web browser.12

Selector Reference
101 Selector Reference

:only-of-type

:only-of-type {

declaration block

}

This pseudo-class matches an element

that’s the only child element of its type.

Compatibility

:root

:root {

declaration block

}

This pseudo-class matches an element

that’s the root element of the document.

In HTML documents, this selector

matches the html element.

SPEC
CSS3

BROWSER SUPPORT
Op9.2Saf1.3+FF1+IE7
NONEFULLFULLNONE

Example

In an HTML document, this selector will
match the html element:

:root {
⋮ declarations

}

12 http://www.konqueror.org/

http://www.konqueror.org/

The Ultimate CSS Reference 102

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneFullFullFullFullFullFullNoneNoneNone

This pseudo-class is currently only supported by Firefox and Safari.

:empty

:empty {

declaration block

}

This pseudo-class matches elements

that have no children. Element nodes

and non-empty text nodes are

considered to be children; empty text

nodes, comments, and processing

instructions don’t count as children. A

text node is considered empty if it has

a data length of zero; so, for example, a

text node with a single space isn’t

empty.

Compatibility

SPEC
CSS3

BROWSER SUPPORT
Op9.2Saf3+FF1+IE7
NONEFULLBUGGYNONE

Example

The selector p:empty will match the first
paragraph, but not the second or third, in
this example:

<p></p>
<p> </p>
<p>Hello, World!</p>

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneFullBuggyBuggyBuggyBuggyBuggyNoneNoneNone

In Firefox versions up to and including 2:

■ The selector body:empty always matches the body element.

■ The selector continues to match an element even after content has been added

dynamically.

In Safari versions up to and including 2, when it appears in an internal style sheet

(using <style> tags), this selector will always match. If this selector is used within

an external style sheet, it works as designed.

SPEC
CSS3

BROWSER SUPPORT
Op9.2Saf1.3+FF1+IE7
NONEBUGGYFULLNONE

:target
:target {

declaration block

}

Example

For example, if the URI was
http://www.example.com/index.html#section2,
the following selector would match the
element that had an id attribute of
"section2":

:target {
⋮ declarations

}

This pseudo-class matches an element

that’s the target of a fragment identifier

in the document’s URI. The fragment

identifier in a URI comprises a #

character followed by an identifier name

that matches the value of an id attribute

of an element within the document.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneBuggyBuggyBuggyFullFullFullNoneNoneNone

Selector Reference
103 Selector Reference

In Safari versions up to and including 3, this rule isn’t applied when the user

navigates using the back and forward buttons.

The Ultimate CSS Reference 104

:enabled

:enabled {

declaration block

}

SPEC
CSS3

BROWSER SUPPORT
Op9.2+Saf3+FF1.5+IE7

FULLFULLFULLNONE

Example

The following example will apply the rule
to all input elements that are currently
enabled:

input:enabled {
⋮ declarations

}

This pseudo-class matches user

interface elements that are enabled. An

element is enabled when it can be

activated or can gain focus—this usually

means the element can be selected,

clicked on, or accept text input.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullNoneNoneFullFullNoneNoneNoneNone

This pseudo-class is currently only supported in Safari 3, Firefox 1.5 and up, and

Opera 9.2 and up.

:disabled

:disabled {

declaration block

}

This pseudo-class matches user

interface elements that are disabled. An

element is disabled when it can’t be

activated or accept focus—this often

means the element can’t be selected, be

clicked on, or accept text input,

although it could do so if it was in an

enabled state.

SPEC
CSS3

BROWSER SUPPORT
Op9.2+Saf3+FF1.5+IE7

FULLFULLFULLNONE

Example

The following rule will apply to all input
elements that are currently disabled:

input:disabled {
⋮ declarations

}

105 Selector Reference

Compatibility

Selector Reference

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullNoneNoneFullFullNoneNoneNoneNone

This pseudo-class is currently only supported in Safari 3, Firefox 1.5 and up, and

Opera 9.2 and up.

:checked Pseudo-class
:checked {

declaration block

}

This pseudo-class matches elements

like checkboxes or radio buttons that

are checked or toggled to the “on” state.

In HTML, this state corresponds to the

selected and checked attributes.

Compatibility

Example

The following rule will apply to the
element that has an id of "confirm" (for
example, a checkbox) when that element
has been checked:

#confirm:checked {
⋮ declarations

}

SPEC
CSS3

BROWSER SUPPORT
Op9.2+Saf3+FF1+IE7

FULLFULLFULLNONE

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullNoneNoneFullFullFullNoneNoneNone

This pseudo-class is currently only supported in Safari 3, Firefox 1.0 and up, and

Opera 9.2 and up.

The Ultimate CSS Reference 106

:not(S)

:not(simple selector) {

declaration block

}

SPEC
CSS3

BROWSER SUPPORT
Op9.2Saf1.3+FF1+IE7
NONEFULLFULLNONE

Example

The following selector matches all elements
except table elements:

:not(table) {
⋮ declarations

}

This pseudo-class is also known as the

negation pseudo-class. The argument it

takes can be any simple selector, but it

can’t contain either the negation

pseudo-class or a pseudo-element. This

pseudo-class matches elements that

aren’t matched by the specified selector.

For example, the selector,

input:not([type="submit"]), matches all input elements, except input elements

with a type value of "submit"—that is, HTML submit buttons.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneFullFullFullFullFullFullNoneNoneNone

This pseudo-class is currently only supported by Firefox and Safari.

Pseudo-elements
Pseudo-elements match virtual elements that don’t exist explicitly in the document

tree. Pseudo-elements can be dynamic, inasmuch as the virtual elements they

represent can change, for example, when the width of the browser window is altered.

They can also represent content that’s generated by CSS rules.

In CSS1 and CSS2, pseudo-elements start with a colon (:), just like pseudo-classes.

In CSS3, pseudo-elements start with a double colon (::), which differentiates them

from pseudo-classes.

CSS1 gave us :first-letter (p. 107) and :first-line (p. 110); CSS2 gave us

generated content and the :before (p. 113) and :after (p. 114) pseudo-elements;

and CSS3 added ::selection (p. 115).

SPEC
CSS1

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
BUGGYFULLBUGGYBUGGY

:first-letter
:first-letter {

declaration block

}

Example

The following example selector will match
the first letter of a p element:

p:first-letter {
⋮ declarations

}

The :first-letter pseudo-element is

mainly used for creating common

typographical effects like drop caps.

This pseudo-element represents the first

character of the first formatted line13 of

text in a block-level element, an inline

block, a table caption, a table cell, or a

list item.

Selector Reference
107 Selector Reference

No other content (for example, an image) may appear before the text.

Certain punctuation characters, like quotation marks, that precede or follow the

first character should be included in the pseudo-element. Despite the name, this

pseudo-element will also match a digit that happens to be the first character in a

block.

If the element is a list item, :first-letter applies to the first character of content

after the list item marker unless the property list-style-position is set to inside,

in which case the pseudo-element may be ignored by the user agent. If an element

includes generated content created with the :before (p. 113) or :after (p. 114)

pseudo-elements, :first-letter applies to the content of the element including

the generated content (p. 347).

13 http://www.w3.org/TR/CSS21/selector.html#first-formatted-line

http://www.w3.org/TR/CSS21/selector.html#first-formatted-line

The Ultimate CSS Reference 108

The CSS2 specification14 states that only certain CSS properties are to be supported

for this pseudo-class.

Let’s look at a code fragment that shows how this pseudo-element works:

<p>Hello, World!</p>

The selector p:first-letter matches the letter H. It’s as if there were an extra

element in the markup:

<p><p:first-letter>H</p:first-letter>ello, World!</p>

The above markup isn’t valid HTML—it’s just a visualization of the pseudo-element

concept.

If the first child node of an element is another block element, this pseudo-element

will propagate to the child node. Here’s an example:

<div>

 <p>Hello, World!</p>

</div>

Both selectors—div:first-letter and p:first-letter—will match the letter H.

The equivalent pseudo-markup is:

<div>

 <p>

 <div:first-letter>

 <p:first-letter>H</p:first-letter>

 </div:first-letter>ello, World!

 </p>

</div>

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

BuggyFullFullFullBuggyBuggyBuggyBuggyBuggyBuggy

14 http://www.w3.org/TR/CSS21/selector.html#first-letter

http://www.w3.org/TR/CSS21/selector.html#first-letter

109 Selector Reference

Internet Explorer versions up to and including 7, and Firefox versions up to and

including 2 ignore the letter-spacing property when it’s applied to this

pseudo-element.

The behavior mentioned above, where if the first child node of an element is another

block element, this pseudo-element is propagated to the child node, is not supported

by Internet Explorer up to and including version 7, Firefox up to and including

version 2, and Opera 9.2. However, Safari, up to and including version 3, does

support this behavior correctly.

In Internet Explorer versions up to and including 7:

■	 Quotation marks are treated as punctuation, but all other characters are treated

as letters.

■	 The list-item marker is included within this pseudo-element.

■	 The float property is not applied correctly—only a value of left is supported,

and once it’s set, it can’t be overwritten with a value of none later in the style

sheet.

■	 When this pseudo-element is applied to a positioned element that has a layout

(p. 158), and whose first character is an inline descendant, the first line box isn’t

displayed.

■	 Bizarre specificity and inheritance problems affect this pseudo-element.15

Internet Explorer versions up to and including 7, Firefox versions up to and including

2, and Opera 9 will not include punctuation immediately following the first character

in this pseudo-element.

In Opera 9.2, whitespace is counted as a letter if it’s preceded only by punctuation.

In Internet Explorer 6, this pseudo-element fails if it’s not immediately followed by

whitespace. This means that whitespace must appear between the pseudo-element

and the declaration block, as well as between the pseudo-element and the comma,

if the pseudo-element isn’t the last selector in a group of selectors.

15	 You can find some examples of this behavior at http://www.satzansatz.de/cssd/pseudocss.html.

Selector Reference

http://www.satzansatz.de/cssd/pseudocss.html

The Ultimate CSS Reference 110

Internet Explorer versions up to and including 6 will crash in certain situations

involving this pseudo-element and underlined links. This problem’s documented

on the Quirksmode web site.17

:first-line

:first-line {

declaration block

}

SPEC
CSS1

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
PARTIAL FULLPARTIAL BUGGY

Example

The following selector will match the first
line of a p element:

p:first-line {
⋮ declarations

}

This pseudo-element represents the first

formatted line of text in a block-level

element, an inline block, a table caption,

or a table cell. As with the

:first-letter pseudo-element, the

first line may actually occur inside a

block-level child element.

The amount of text that’s represented

by :first-line depends on how the text is rendered—it’s affected by factors like

font size and line width. If the user changes the text size or the width of the browser

window, more or fewer characters could become part of the pseudo-element.

Here’s an example rule set and HTML block:

p:first-line {

 text-transform: uppercase;

}

<p>This is a paragraph of text containing several lines of text.

How this text is broken up into lines by a user agent depends on

how the text is rendered, font properties, size of browser window,

and size of viewing device.</p>

17 http://tinyurl.com/2eecpg

http://tinyurl.com/2eecpg

111 Selector Reference

The selector p:first-line will match the first line of text rendered by the user

agent. We can see how a user agent might insert the pseudo-element into the HTML

block like this:

<p><p:first-line>This is a paragraph of text</p:first-line>

containing several lines of text.

How this text is broken up into

lines by a user agent depends on

how the text is rendered, font

properties, size of browser

window, and size of viewing

device.</p>

The above markup isn’t valid HTML; it’s just a visualization of the pseudo-element

concept.

If the first child node of an element is another block element, this pseudo-element

will propagate to the child node. Here’s another example:

<div>

 <p>This is a paragraph of text containing several lines of text.

 How this text is broken up into lines by a user agent depends on

 how the text is rendered, font properties, size of browser

 window, and size of viewing device.</p>

</div>

Both the div:first-line and p:first-line selectors will be able to be matched

in this case. The equivalent pseudo-markup is:

<div>

 <p>

 <div:first-line>

 <p:first-line>This is a paragraph of text</p:first-line>

 </div:first-line>

 containing several lines of text.

 How this text is broken up into

lines by a user agent depends on

 how the text is rendered, font

properties, size of browser

window, and size of viewing

device.</p>

</div>

Selector Reference

The Ultimate CSS Reference 112

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

Partial FullFullFullPartial Partial Partial BuggyBuggyBuggy

The behavior mentioned above, where if the first child node of an element is another

block element, this pseudo-element is propagated to the child node, is not supported

by Internet Explorer up to and including version 7, Firefox up to and including

version 2, and Opera 9.2. However, Safari, up to and including version 3, does

support this behavior correctly.

In Internet Explorer 6, this pseudo-element fails if it’s not immediately followed by

whitespace. This means that whitespace must appear between the pseudo-element

and the declaration block, as well as between the pseudo-element and the comma,

if the pseudo-element isn’t the last selector in a group of selectors.

In Internet Explorer versions up to and including 7:

■	 This pseudo-element doesn’t work when it’s used on a positioned element that

has a layout (p. 158).

■	 This pseudo-element acts like a block element—it spans the entire width of the

containing block instead of displaying inline (p. 166).

■	 The list-item marker is included within this pseudo-element.

■	 Bizarre specificity and inheritance problems affect this pseudo-element.18

18 You can find some examples of this behavior at http://www.satzansatz.de/cssd/pseudocss.html.

http://www.satzansatz.de/cssd/pseudocss.html

SPEC
CSS2

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7
BUGGYFULLPARTIAL NONE

Example

In this example, the text “You are here:” is
rendered before the document element with
the id value of "breadcrumbs", and given
a right margin value of 0.5em:

#breadcrumbs:before {
 content: "You are here:";
 margin-right: 0.5em;
}

Selector Reference
113 Selector Reference

:before

:before {

declaration block

}

This pseudo-element represents

generated content (p. 347) rendered

before another element, and is used in

conjunction with the content property

(p. 348). Additional properties can be

specified to style the pseudo-element.

Note that the generated content is only

rendered—it doesn’t become part of the

document tree.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

BuggyFullFullFullPartial Partial Partial NoneNoneNone

In Firefox versions up to and including 2, this pseudo-element is not fully stylable,

most notably when it comes to applying positioning properties. Firefox appears to

have implemented the original CSS2 specification.

In Firefox 1.5 and 2, this pseudo-element doesn’t work for fieldset elements.

In Opera 9.2, whitespace is always displayed within this pseudo-element as if it’s

preformatted text—like whitespace in an HTML <pre> tag.

Other Relevant Stuff
content (p. 348)

inserts content before or after an element

The Ultimate CSS Reference 114

:after

:after {

declaration block

}

This pseudo-element represents

generated content (p. 347) that’s rendered

after another element. This

pseudo-element is used in conjunction

with the content property (p. 348), and

additional properties can be specified

to style it. Note that the generated

content is only rendered—it doesn’t

become part of the document tree.

Compatibility

SPEC
CSS2

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7
BUGGYFULLPARTIAL NONE

Example

This example will render the text “cm” in
the color #cccccc, after a span element
with a class value of "centimeters":

span.centimeters:after {
 content: "cm";
 color: #cccccc;
}

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

BuggyFullFullFullPartial Partial Partial NoneNoneNone

In Firefox versions up to and including 2, this pseudo-element is not fully stylable,

most notably when it comes to applying positioning properties. Firefox appears to

have implemented the original CSS2 specification.

In Firefox 1.5 and 2, this pseudo-element doesn’t work for fieldset elements.

In Opera 9.2, whitespace is always displayed within this pseudo-element as if it’s

preformatted text—like whitespace in an HTML <pre> tag.

Other Relevant Stuff
content (p. 348)

inserts content before or after an element

SPEC
CSS3

BROWSER SUPPORT
Op9.2Saf1.3+FF2IE7
NONEPARTIAL NONENONE

::selection
::selection {

declaration block

}

Example

A selector like textarea::selection will
match any user-selected text within a
textarea element.

This CSS3 pseudo-element represents

a part of the document that’s been

highlighted by the user, including text

in editable text fields. Only a small

subset of CSS properties can be used in

rules that apply to this pseudo-element;

user agents must allow the background and color properties to be used, and can

Selector Reference
115 Selector Reference

optionally allow the use of the cursor and outline properties.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NonePartial Partial Partial NoneNoneNoneNoneNoneNone

Safari versions up to and including 3 don’t support this pseudo-element in the case

of input and textarea elements.

Chapter 5
The Cascade, Specificity,
and Inheritance
Other than being the C in the acronym CSS, the fact that style sheets are described

as “cascading” is an important, if complex, part of the way styles are applied to the

elements in a document. It’s called the CSS cascade (p. 118), because style

declarations cascade down to elements from many origins.

The cascade combines the importance, origin, specificity (p. 126), and source order

of the applicable style declarations to determine exactly—and without

conflict—which declaration should be applied to any given element.

Inheritance (p. 133) is the means by which, in the absence of any specific declarations

applied by the CSS cascade, a property value of an element is obtained from its

parent element.

The Cascade, Specificity, and

Inheritance

The Ultimate CSS Reference 118

The Cascade

The CSS cascade uses selector pattern matching to apply to elements style

declarations that have cascaded down through the document from various sources.

But when two or more declarations apply to the same element, and set the same

property, how does the browser determine which declaration to apply?

By combining importance, origin, specificity (p. 126), and the source order of the

style concerned, the CSS cascade assigns a weight to each declaration. This weight

is used to determine exactly, and without conflict, which style declarations should

be applied to a specific element: the declaration with the highest weight takes

precedence.

The Process of Resolution

The process of resolution employed by the CSS cascade for each property involves

these four steps:

1.	 For a given property, find all declarations that apply to a specific element.

2.	 Sort the declarations according to their levels of importance, and origins.

3.	 Sort declarations with the same level of importance and origin by selector

specificity.

4.	 Finally, if declarations have the same level of importance, origin, and specificity,

sort them by the order in which they’re specified; the last declaration wins.

In step one, a user agent finds all the valid declarations for the specific property to

be applied to the element in question; to do so, it looks at all the sources that specify

CSS styles for the given media type. Declarations can come from three sources: the

user agent, the author, and user style sheets.

User agent style sheets are the default sets of declarations applied by the user agent.

For example, according to the CSS specification,1 the default value for the

text-decoration (p. 332) property is none, but typically, user agents set this property

to underline for a elements. In some user agents, the default settings can be changed;

1 http://www.w3.org/TR/CSS21/text.html#decoration

http://www.w3.org/TR/CSS21/text.html#decoration

119 The Cascade, Specificity, and Inheritance

for example, a user might be able to change the default background color, which

may change the user agent style sheet.

A user agent may also allow a user to create a customized set of styles to use by

default, or for specific documents. This custom style sheet is called a user style

sheet. For instance, both Opera and Safari offer a facility that allows the user to

select and use a separate style sheet file.

Author style sheets are those that are linked to the document via a link element,

specified using a style element within the document’s head element, or specified

within an element style attribute (inline styles).

The user agent must search through all the user agent, author, and user style sheets

until it has all the style declarations that are available for the property, and applicable

to the element in question. The applicability of a declaration is determined by

selector pattern matching (p. 59); a declaration is applied to an element if the

declaration’s selector matches the element. If there’s more than one applicable

declaration that sets a specific property on an element, the cascade proceeds to step

two.

In step two, declarations that set the same property for the same element are sorted

by their levels of importance, and their origins. A declaration can have either of

two levels of importance: declarations that are appended with the !important

statement are called important declarations; declarations that aren’t are called

normal declarations. You can read more about !important in !important

Declarations (p. 124).

Declarations are sorted in the following order (from lowest to highest priority):

1. user agent declarations

2. normal declarations in user style sheets

3. normal declarations in author style sheets

4. important declarations in author style sheets

5. important declarations in user style sheets

The declaration with the highest priority is applied to the element. If two or more

declarations that set the same property for the same element also have the same

The Cascade, Specificity, and
Inheritance

The Ultimate CSS Reference 120

priority (that is, the same combination of importance level and origin), the cascade

proceeds to step three.

In step three, declarations are sorted on the basis of the specificity of their selectors.

The specificity of a selector is represented by four comma-separated values, and is

calculated by counting the occurrences of different elements in the selector. For

example, inline styles have the highest specificity, while element type selectors

have the lowest specificity. A complete explanation of the specificity calculation

requires more space than is available here; read more about it in Specificity (p. 126).

The declaration that has the selector with the highest specificity is applied to the

element. However, if two or more declarations that set the same property for the

same element also have the same levels of priority and specificity, the CSS cascade

proceeds to step four.

Step four is the simplest step and makes the final determination about which

declaration to apply to the element without ambiguity. The declaration that’s

specified last is the one that’s applied to the element—a process that’s often

expressed as the latter declaration overwriting the former. A declaration can be

overwritten by another within the same declaration block, within the same style

sheet, or in another style sheet.

Declarations in external style sheets are specified in the order in which they’re

linked to the document. This is true for style sheets linked via the link element as

well as those linked via the @import statement. Declarations within the style sheet

containing the @import statements will overwrite all of the declarations in the linked

style sheets.

Pay careful attention to the order of link and style elements within the document’s

head. Declarations in a style element will overwrite those in a style sheet linked

via a link element if the style element is specified after the link element. However,

it’s a common mistake to assume that declarations in a style element automatically

overwrite those in an external style sheet: if a link element is specified after a style

element, the declarations in the linked style sheet will in fact overwrite those in

the style element.

121 The Cascade, Specificity, and Inheritance

The conclusion of this whole process is that the CSS property for the element is

set. However, you may be wondering about all the properties the CSS cascade doesn’t

set. For example, what happens when there’s no applicable declaration to set the

color property for an element? How does it get a foreground color? In the absence

of such a declaration, some properties are inherited from the parent of the element.2

The alternative to relying on the inheritance mechanism is to use the property value

inherit. Doing so ensures that the inherited value is included in the CSS cascade

calculations, but be careful when you use inherit, as browser support for this

property value is limited in Internet Explorer.3 If a property isn’t set via the CSS

cascade, and it’s not inherited, it’s up to the user agent to supply a default value for

the property.

The Cascade in Action

Let’s explore the cascade’s effect on a particular element. Consider this HTML

fragment:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

<html>

 <head>

 <style type="text/css">

 body {

 color: #000;

 background-color: #fff;

 }

 #wrap {

 font-size: 2em;

 color: #333;

 }

 div {

 font-size: 1em;

 }

 em {

 color: #666;

 }

 p.item {

 color: #fff;

 background-color: #ccc;

2 You can read more about inheritance in Inheritance (p. 133).

3 Read more about inherit in The CSS Property Value inherit (p. 135).

The Cascade, Specificity, and
Inheritance

The Ultimate CSS Reference 122

border-style: dashed;

 }

 p {

 border: 1px solid black;

 padding: 0.5em;

 }

 </style>

 </head>

 <body>

 <div id="wrap">

 <p class="item">

 This is the cascade in

action

 </p>

 </div>

 </body>

</html>

For the sake of brevity, all the styles affecting this document are specified in a style

element in the document’s head so they all have the same levels of importance and

origin. Looking at the styles above, what do you expect the border style, font size,

and foreground color to be for the p element?

Have a look at Figure 5.1 and see if you were correct.

Figure 5.1: The cascade in action

As you can see, the border-style is dashed, the font-size is 2em and the color

is white. So where did these properties come from?

There are two CSS rules that apply to the p element:

p.item {

 color: #fff;

 background-color: #ccc;

 border-style: dashed;

}

p {

123The Cascade, Specificity, and Inheritance

border: 1px solid black;

 padding: 0.5em;

}

You can see there’s no conflict for the color property; there’s only one applicable

declaration, so the color is set to #fff, or white. We do have a conflict for the

background-style property, however, because there are two applicable declarations:

dashed and solid. The next step, then, is to compare the specificity of the selectors.

The selector p.item, has a higher specificity (0,0,1,1) than that of the selector p

(0,0,0,1), so the property is set to dashed.

But where does the font-size value come from? There are no explicit declarations

that set the font-size for the p element, but font-size is one of the properties

that’s inherited from an element’s parent. The div element is the parent to our p

element, and the CSS cascade has set its font-size to 2em in response to the rule

with the selector #wrap:

#wrap {

 font-size: 2em;

 color: #333;

}

Thus, our p element inherits the font-size value of 2em. If our p element didn’t

have an applicable, explicit color declaration, it would have inherited the value

#333 from its parent, too.

The em element has a foreground color of #666 because an applicable declaration

is present in the code, as shown in the rule below:

em {

 color: #666;

}

Because the em element is a child of our p element, it would have inherited the

foreground color #fff had the declaration not been present.

You may also be wondering why the anchor element is a different color and

underlined, since we haven’t applied any styling to it, and color is normally

The Cascade, Specificity, and
Inheritance

The Ultimate CSS Reference 124

inherited from the parent element. In most user agent style sheets, anchor elements

are styled blue and underlined, and the cascade applies user agent style sheet styles

first. We could of course redefine the anchor’s CSS properties ourselves; as we

already know, declarations in an author style sheet will overwrite the same

declarations in a user agent style sheet.

As you can see, the cascade works very well, and once you understand where the

styles are coming from, you can control them much more easily.

CSS Inspectors
Many useful tools are available for analyzing the document and identifying exactly
where the styles on the page are coming from; they’ll also help you comprehend
this subject. One such tool for the Firefox browser is an extension called Firebug.4

Similar extensions are available for Safari,5 Opera,6 and Internet Explorer.7

!important Declarations

During the importance and origin calculation in step two of the cascade resolution

process, the !important statement can be used to add weight to a declaration. A

declaration appended with the ! operator followed immediately by the keyword

important, is said to be an important declaration, rather than a normal declaration.

An important declaration in an author style sheet has more weight than a normal

declaration in an author style sheet, but an important declaration in a user style

sheet will trump them both.

In CSS1, important declarations in an author style sheet had greater weight than

important declarations in a user style sheet. In order to improve the accessibility

of documents that use CSS for presentation, CSS2 reversed the ranking and gave

important declarations in user style sheets the highest weight. This facility allows

users with special needs to specify desired settings like a larger font size, and to be

confident that those settings will be applied.

4 http://getfirebug.com/

5 http://webkit.org/blog/?p=41

6 http://dev.opera.com/tools/

7 http://www.microsoft.com/downloads/details.aspx?familyid=e59c3964-672d-4511-bb3e-2d5e1db91038

http://getfirebug.com/
http://webkit.org/blog/?p=41
http://dev.opera.com/tools/
http://www.microsoft.com/downloads/details.aspx?familyid=e59c3964-672d-4511-bb3e-2d5e1db91038

125The Cascade, Specificity, and Inheritance

Here’s an example of an important declaration—in this case, a font-size declaration:

p {

 font-size: 1em !important;

}

If important declarations have the same origin, the normal rules of specificity and

order specified apply. If !important is used on a declaration with a shorthand

property, it’s equivalent to adding !important to all of the individual subproperties.

Placement of !important
Make sure the !important statement is placed at the end of the declaration, just
before the semicolon, and after the value. It will be invalid if it’s located anywhere
else. Note also that when a shorthand property is used, the statement must still
appear at the end of the list of values for that property, not against each individual
value. Here’s an example:

.example {
 margin: 10px 12px 9px 8px !important;
}

The above rule would make all the margin values (top, right, bottom, and left
margins) for elements within a class of "example" !important.

Internet Explorer Support
In Internet Explorer 6 and earlier, if an important declaration appears before a normal
declaration for the same property within the same declaration block, the normal
declaration will overwrite the important declaration.

Internet Explorer 6 and 7 give importance to a declaration when an illegal identifier
is used in place of the keyword important, instead of ignoring the declaration as
they should.

!important and Maintenance
Introducing even one uncommented important declaration into an author style sheet
has a huge negative impact on the style sheet’s maintainability, so it should be used
with care. The only way to overwrite an important declaration is by using even
more important declarations—an approach that soon becomes unmanageable. A

The Cascade, Specificity, and
Inheritance

style sheet that’s littered with important declarations often signals that an author
hasn’t thought clearly enough about the structure of the CSS.

The Ultimate CSS Reference 126

Specificity
Specificity is a mechanism within the CSS cascade that aids conflict resolution.

The concept of specificity states that when two or more declarations that apply to

the same element, and set the same property, have the same importance and origin

(p. 118), the declaration with the most specific selector will take precedence.

Consider this example:

p {

 color: black;

 background-color: white;

}

div.warning p {

 color: red;

}

div#caution p {

 color: yellow;

}

body#home div p {

 color: white;

}

The above example style sheet contains four style rules that have a selector that

matches p elements. Because one of those rules has an element type selector p, it’s

guaranteed that two or more rules will apply to the same p element, and because

they all contain a color property declaration, the user agent needs a way to

determine which of the declarations should be applied. What will the final color

value be for the p element?

The simple answer is that the more specific selector’s declaration will take

precedence. The user agent calculates each selector’s specificity so that a comparison

can be made, and resolves the deadlock by choosing the declaration whose selector

has the highest specificity.

127The Cascade, Specificity, and Inheritance

Calculating Specificity

Here’s a simplified description of the process by which the specificity of the selectors

of two or more declarations is compared:

1.	 If one declaration is from a style attribute, rather than a rule with a selector (an

inline style), it has the highest specificity. If none of the declarations are inline,

proceed to step two.

2.	 Count the ID selectors (p. 65). The declaration with the highest count has the

highest specificity. If two or more have the same number of ID selectors, or they

all have zero ID selectors, proceed to step three.

3.	 Count the class selectors (p. 63) (for example, .test), attribute selectors (p. 67)

(for example, [type="submit"]), and pseudo-classes (p. 80) (for example, :hover).

The declaration with the highest total has the highest specificity. If two or more

have the same total, or they all have totals of zero, proceed to step four.

4.	 Count the element type selectors (p. 62) (for example div) and pseudo-elements

(p. 106) (for example, :first-letter). The declaration with the highest total has

the highest specificity.

If two or more selectors have the same specificity, then, according to the rules of

the CSS cascade, the latter specified rule takes precedence.

If you want to be technical, the W3C recommendation (6.4.3)8 describes the method

for calculating a selector’s specificity. The result of this calculation takes the form

of four comma-separated values, a,b,c,d,9 where the values in column “a” are the

most important and those in column “d” are least important. A selector’s specificity

is calculated as follows:

■	 To calculate a, count 1 if the declaration is from a style attribute rather than a

rule with a selector (an inline style), 0 otherwise.

■	 To calculate b, count the number of ID attributes in the selector.

■	 To calculate c, count the number of other attributes and pseudo-classes in the

selector.

8	 http://www.w3.org/TR/CSS21/cascade.html#specificity
9	 This is different from the CSS1 specification, in which specificity took the form of a number score,

as explained at http://www.w3.org/TR/CSS1#cascading-order.

The Cascade, Specificity, and
Inheritance

http://www.w3.org/TR/CSS21/cascade.html#specificity
http://www.w3.org/TR/CSS1#cascading-order

The Ultimate CSS Reference 128

■	 To calculate d, count the number of element names and pseudo-elements in the

selector.

The result of counting these elements is not a score, but a matrix of values that can

be compared column by column. As an example, consider the following rule which

contains an element type selector from the previous example:

p {

 color: black;

 background-color: white;

}

If we try to work out the specificity of the above selector on the basis of the specificity

formula, we arrive at a result that looks like 0,0,0,1, as it has one element name.

As we said before, this is not a number but four comma-separated values, where

the values in column a (inline styles) are the most important, and those in column

d (element names and pseudo-elements) are the least important. When comparing

selectors to determine which has the highest specificity, look from left to right, and

compare the highest value in each column. So a value in column b will override

values in columns c and d, no matter what they might be. As such, specificity of

0,1,0,0 would be greater than one of 0,0,10,10.

Specificity Step by Step

Let’s try and break down each part of the calculation procedure so that it’s more

understandable.

The first step is to calculate the value for column a, which we’ve done in Table 5.1.

If the style rule is specified within the element’s HTML style attribute, a should

equal 1; otherwise, it should equal 0. In fact, this is the only case where there is a

value in column a.

129The Cascade, Specificity, and Inheritance

Table 5.1: Inline Style: Column a = 1

Element Types and
Pseudo-elements

Classes, Attributes, and
Pseudo-classes

IDsInline Style

0001

As you can see, an inline style rule will always have a specificity of 1,0,0,0—the

highest level of specificity. Here’s an example of such a style rule:

<p style="color:red;">Red Text</p>

This is one of the reasons why inline styles should be avoided. As inline style rules

always have the highest specificity, the only way to overwrite them within the CSS

cascade is to use the !important statement (p. 124) on the relevant declarations—an

approach that creates a maintenance nightmare.

For rules other than inline styles, we need to calculate columns b, c, and d. Let’s

run through a full calculation for the following rule:

body#home div#warning p.message {

 color: red;

}

The above rule has a selector, body#home div#warning p.message, and a single

declaration, color: red;. Since this isn’t an inline style, we start off with a 0 in

the first column, as Table 5.2 shows.

Table 5.2: Column a = 0

The Cascade, Specificity, and
Inheritance

Element Types and
Pseudo-elements

Classes, Attributes, and
Pseudo-classes

IDsInline Style

???0

To calculate the value for column b, we count the number of ID selectors in the

selector. In our selector, body#home div#warning p, there are two—#home and

#warning—thus, column b is equal to 2, as is depicted in Table 5.3.

The Ultimate CSS Reference 130

Table 5.3: Column b = 2

Element Types and
Pseudo-elements

Classes, Attributes, and
Pseudo-classes

IDsInline Style

??20

Next, we calculate the value for column c, counting the number of class selectors,

attribute selectors, and pseudo-classes in the selector.

Attribute Selectors for IDs
Note that [id="foo"] is not equivalent to #foo—you can see there’s a significant
difference in their levels of specificity.

In our example selector, body#home div#warning p.message, there’s one class

selector, .message, so, as you can see in Table 5.4, c is equal to 1.

Table 5.4: Column c = 1

Element Types and
Pseudo-elements

Classes, Attributes, and
Pseudo-classes

IDsInline Style

?120

Finally, for column d, we count the number of element type selectors and

pseudo-elements in the selector. In our example selector, body#home div#warning

p.message, there are three: body, div, and p. There are no pseudo-elements to be

counted, so we put a 3 in the last column, as Table 5.5 shows.

Table 5.5: Column d = 3

Element Types and
Pseudo-elements

Classes, Attributes, and
Pseudo-classes

IDsInline Style

3120

We now have our result. The specificity for the selector body#home div#warning

p.message can be expressed as: 0,2,1,3.

131 The Cascade, Specificity, and Inheritance

All right, let’s consider a crazy situation where more than half a dozen color

declarations for the same p element have the same levels of importance and origins.

Which color would the browser apply to the element?

Here’s our crazy style sheet:

p.message {

 color: green;

}

#home #warning p.message {

 color: yellow;

}

#warning p.message {

 color: white;

}

body#home div#warning p.message {

 color: blue;

}

p {

 color: teal;

}

* body#home>div#warning p.message {

 color: red;

}

#warning p {

 color: black;

}

We should be able to use the specificity calculation method to work out which of

the declarations would be applied. But, wait a minute! What are the levels of

specificity of the universal selector (p. 60), *, and the child combinator (p. 76), >?

The answer is that they don’t have any specificity at all; they’re simply ignored in

all calculations. This is true for all combinators, which you can treat as though they

had a specificity of zero, as they will make no difference to your calculation. After

all, five out of the seven selectors above use the descendant combinator (p. 74) and

you weren’t worried about those!

See if you can work out the specificity of all the selectors above for yourself before

looking at the answer in Table 5.6.

The Cascade, Specificity, and
Inheritance

The Ultimate CSS Reference 132

Table 5.6: Selector Specificity Results

Element Types
and

Pseudo-elements

Classes,
Attributes, and
Pseudo-classes

IDsInline StyleSelector

3120body#home div#warning
p.message

3120* body#home>div#warning
p.message

1120#home #warning
p.message

1110#warning p.message

1010#warning p

1100p.message

1000p

The results have been ordered according to specificity—the highest are at the top,

and the lowest are at the bottom. As you can see, the top two selectors have exactly

the same specificity, despite the extra universal selector and combinator in one of

them. In this case, they tie for specificity and the one that appears last in the style

sheet will be the winner. If you look at the original style sheet source above, the red

color will be applied to the p element.

You can see from Table 5.6 that the selector p.message has a lower specificity than

the selector #warning p. This is a common cause of head scratching among those

new to CSS, who often think that a class selector will be specific enough to match

an element in all cases.

133The Cascade, Specificity, and Inheritance

Inheritance

Inheritance is the process by which properties are passed from parent to child

elements even though those properties have not been explicitly defined by other

means. Certain properties are inherited automatically, and as the name implies, a

child element will take on the characteristics of its parent with regards to these

properties.

Inheritance and the Cascade
Inheritance is a mechanism that’s separate from the cascade: inheritance applies to
the DOM (Document Object Model) tree, while the cascade deals with the style
sheet rules. However, CSS properties set on an element via the cascade can be
inherited by that element’s child elements.

For example, if a div element has a font-size of 20px then, assuming that no other

font-size declarations have been explicitly defined, any children will also inherit

that font-size value.

Why is this a good thing? Consider the following code:

div {
 font-size: 20px;
}

<div>
 <p>
 This sentence will have a 20px
font-size.

The Cascade, Specificity, and
Inheritance

</p>

</div>

If inheritance wasn’t at work in the above code, we’d have to specify a font-size

declaration for each element in turn, to make sure that all the content in the sentence

was rendered at 20px:

p {

 font-size: 20px;

}

The Ultimate CSS Reference 134

em {

 font-size: 20px;

}

a {

 font-size: 20px;

}

With inheritance working in our favor, we merely have to set the font-size on the

parent; all the children will inherit the font-size automatically. This is why you

only need to set the font-size on the body element to have the whole page rendered

at that font size—unless of course it has been explicitly defined elsewhere.

Quirks Mode Inheritance Bugs
Note that modern browsers operating in quirks mode behave a little buggily in that
they don’t inherit certain properties into tables. This quirks mode behavior emulates
the buggy behavior of much older browsers. Usually, these properties have to be
specifically applied to the table element, although a better approach would be to
avoid the issue altogether by using a doctype that causes the browser to use standards
mode rendering. To learn more about doctypes and rendering modes, see Standards
Mode, Quirks Mode, and Doctype Sniffing (p. 17).

font-size Inheritance
In the above example, we used a font-size of 20px on the parent div element. That
value was inherited by the div’s child elements, but can you imagine what would
happen if we set the font-size property of the div element to a percentage size:

div {
 font-size: 130%;
}

At first glance, you may be thinking that the p element inside the div will inherit
a font-size of 130%, and will therefore be 130% bigger than its parent. You don’t
need to worry, though, because this is taken care of for you: the p element will
inherit only the actual computed font size of the parent—not the 130% scaling
factor—and will therefore be the same size as the parent. This is not the same as if
we had specified the following:

div, p, a {
 font-size: 130%;
}

In the above code, the p element would be 130% bigger than its parent div, and the
nested anchor element would be 130% bigger still than the p element. Take care
when you’re setting percentage and em font sizes on nested elements, or this sort of
compounding will occur.

135The Cascade, Specificity, and Inheritance

As we already mentioned (before we were sidetracked!), only some properties are

inherited from the parent automatically. The reason for this is quite obvious if you

think about it. If, for instance, borders were inherited from the parent, the result

would look very messy! Not only would the parent element have a border, but so

would every child element; the result would be disastrous.

The foreground color is inherited by default, but backgrounds aren’t. Again, the

reason for this is obvious: in most cases, you’d want the foreground color to be

inherited by child elements, but if the parent element had a background image, you

wouldn’t want the child elements to have the same image, as their background

images probably conflict with their parent’s background image.

A lot of people think that the background-color property is also inherited. In fact

this is not the case. The default value for background-color is transparent. This

accomplishes what’s usually desired anyway, because the parent’s background color

will be visible through the child element’s transparent background.

On the other hand, you may want to force the background to be inherited. If so, you

may be able to use the inherit property value (p. 135). The inherit property value

has other uses too; it allows you to increase the weight of an inherited property by

adding it to the author style sheet.

The CSS Property Value inherit
Even though certain characteristics are inherited automatically in CSS, there may

be situations in which you want to increase the weight of the inherited property.

Specifying a value of inherit for any CSS property that’s applied to an element

will cause the element to gain its parent’s computed value for the property in

question. By specifying in the author style sheet that a property should inherit its

value, you can increase its weight.

The Cascade, Specificity, and
Inheritance

Internet Explorer Support for inherit
Internet Explorer 7 and earlier versions don’t support the value inherit for any
properties other than direction (p. 343) and visibility (p. 273).

The Ultimate CSS Reference 136

Normally, in the absence of any applicable declaration, the color property is

inherited. However, in the case of anchor elements, the color property is commonly

set to blue in the user agent style sheet. If you wanted to reinforce the importance

of the inherited value, you could use the value inherit in an author or user style

sheet, overwriting the user agent style sheet declaration. In the following example,

we set the foreground color of the p element to #000, or black, and specify that any

child anchor elements should inherit the value of the foreground color from their

parent element:

p {

 color: #000;

}

p a:link {

 color: inherit;

}

When you’re using shorthand notation such as background, you can’t mix inherit

with other values. For example, the following background declaration is wrong:

p {

 background: #fff inherit left top;

}

In this case, you might be hoping that this element will inherit the parent’s

background-image property. Unfortunately, you’d be out of luck. inherit must be

the only value in the declaration, because there’s simply no way of identifying the

subproperty to which the value inherit refers—after all, it’s not unique within the

sequence. In the example above, inherit becomes ambiguous: it could refer to the

background-image property, or to the background-attachment property, and the

user agent has no way of knowing which one it applies to. To have an element

inherit a specific property, you need to use the full notation instead of shorthand.

In this case, we need to specify the background-image property:

137The Cascade, Specificity, and Inheritance

p {

 background-image: inherit;

}

To find if a property is inherited by default, refer to the specific property reference

page.

Summary
The word “cascading” in the name Cascading Style Sheets refers to the way that

styles cascade from various style sheet sources to the elements in the document

tree. The CSS cascade (p. 118) is the process of resolution that determines the final

value of a property when multiple applicable declarations exist for that property.

The process can be summarized as:

1.	 Find all declarations that apply to a specific element.

2.	 Sort the declarations according to their importance and origins.

3.	 Sort declarations with the same levels of importance and origin by selector

specificity.

4.	 Sort declarations with the same levels of importance, origin, and specificity by

their source order.

To calculate the priority of importance and origin, the cascade uses this list (in

order from lowest to highest priority):

1.	 user agent declarations

2.	 normal declarations in user style sheets

3.	 normal declarations in author style sheets

4.	 important declarations in author style sheets

5.	 important declarations in user style sheets

To give importance to a declaration, append !important (p. 124) to it. The use of

!important in author style sheets isn’t recommended, however, because it can make

maintenance difficult.

The Cascade, Specificity, and

Inheritance

The Ultimate CSS Reference 138

Specificity (p. 126) is calculated by counting the components of the declarations’

selectors. Inline styles have the highest degree of specificity; element type selectors

have the lowest.

If a property isn’t set via the CSS cascade, it may be inherited (p. 133) automatically

from a parent element. Not all properties are inherited in this way.

The property value inherit can be used to increase the weight of the inherited

property in the cascade; however, lack of support from Internet Explorer limits its

usefulness.

Chapter 6
CSS Layout and Formatting
While CSS1 didn’t have much to offer for the graphical layout of documents, CSS2

has introduced several new properties for layout, and CSS3 will probably add even

more. Although CSS still doesn’t provide total control over the page layout, it’s far

more powerful than the old-school technique of using layout tables and

presentational markup.

A web browser typically reads and renders HTML documents. This happens in two

phases: the parsing phase and the rendering phase.

During the parsing phase, the browser reads the markup in the document, breaks

it down into components, and builds a document object model (DOM) tree.1

Consider this example HTML document:

1 It’s called a tree, because a graphical representation of the DOM looks much like an upside-down
tree.

CSS Layout and Form
atting

The Ultimate CSS Reference 140

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

<html>

 <head>

 <title>Widgets</title>

 </head>

 <body>

 <h1>Widgets</h1>

 <p>Welcome to Widgets, the number one company

 in the world for selling widgets!</p>

 </body>

</html>

The above HTML document can be visualized as the DOM tree in Figure 6.1 (in

which the text nodes have been omitted for clarity).

Figure 6.1: The DOM tree

Each object in the DOM tree is called a node. There are several types of nodes,

including element nodes and text nodes. At the top of the tree is a document node,

which contains an element node called the root node; this is always the html element

in HTML and XHTML documents, and it branches into two child element

nodes—head and body—which then branch into other children.

A child node is structurally subordinate to its parent node. In HTML terms, this

means that the child’s tags are nested inside the tags of the parent. For example, we

can see in Figure 6.1 that the h1 element is a child node of the body element and

the body element is the parent node of the h1 element. A node can be called a

141 CSS Layout and Formatting

descendant node if it’s a child, grandchild, and so on, of another node. A node can

be called an ancestor node if it’s a parent, grandparent, and so on, of another node.

For example, the h1 element is a descendant node of the html element, and the html

element is an ancestor node of the h1 element. Nodes that have the same parent are

called siblings. The h1 and p elements are sibling nodes.

When the DOM tree has been constructed, and any CSS style sheets have been

loaded and parsed, the browser starts the rendering phase. Each node in the DOM

tree will be rendered as zero or more boxes.

Just as there are block-level elements and inline elements in HTML, there are block

boxes and inline boxes in CSS. In fact, there are several other box types, but they

can be seen as subtypes of the block and inline boxes.

A CSS box is always rectangular.2 It has four sides with a 90° angle between each

of them.

From a somewhat simplified perspective, we can say that it’s the user agent style

sheet (p. 118) which specifies that block-level HTML elements generate block boxes,

while inline-level HTML elements generate inline boxes. We can, of course, use the

display property to change the type of the box generated for any element.

CSS does not, however, affect the markup in any way. The separation into block-level

and inline elements in HTML is specified in the HTML document type definition,

and cannot be changed. For example, setting the display property to block for a

span element doesn’t allow us to nest an h1 element inside it, because the HTML

document type definition forbids it.

The Viewport, the Page Box, and the Canvas
In a continuous output medium, such as a computer monitor, a browser displays a

web document in a viewport—a rectangular window through which we can view

a part of the document. In a paged medium, such as printed paper, each page can

2	 This may change in future versions of CSS, but then we will have to call them something other
than “boxes.”

CSS Layout and Form
atting

The Ultimate CSS Reference 142

be seen as a viewport whose dimensions are the same as the page box (the printable

part of the page, excluding any page margins).

The browser renders the document on a canvas, which, consequently, is at least as

large as the document itself. If the viewport is larger than the document, the canvas

fills the viewport.

Any background color or image that’s specified for the root element—the html

element for HTML and XHTML documents—will be rendered as the background

for the whole canvas, rather than for the root element alone.3 In other words, the

background specified for the root element will cover the entire content area of the

browser window, even if the document doesn’t contain enough content to fill the

whole window.

The CSS Box Model
Your understanding of the box model concept, and how it relates to the way in

which an element’s final dimensions are determined, will be essential to your

understanding of how an element is positioned on a web page. The box model

applies to block-level elements. A companion concept, the inline layout model,

defines how inline elements are positioned, and is covered in Inline Formatting

(p. 166).

Calculating Box Dimensions

In CSS2.1, block-level elements can only be rectangular. We calculate the overall

dimensions of a block-level element by taking into account the height and width

of the content area, as well as any margins, padding, and borders that are applied

to the element.

We can define the content width of an element by declaring its width (p. 194) and

height (p. 188) properties. If no declarations are applied, the default value for the

width and height properties is auto.

3 This is not the case in Internet Explorer 5.5 and prior versions, where if a background is specified
for the body element, it will cover the whole canvas and obscure any background that’s specified
for the html element.

143CSS Layout and Formatting

For static (non-positioned) elements, and relatively positioned (p. 176) elements

where the width property has the value auto, the computed width will be the width

of the containing block minus any horizontal margins, borders, padding, and

scrollbars. That is, it will be whatever’s left over when horizontal margins, borders,

padding, and scrollbars (if any) have been deducted from the width of the containing

block.

The containing block is the reference rectangle whose position and dimensions are

used for relative calculations of descendant elements’ positions and dimensions.

Although elements are positioned with respect to their containing block, they’re

not confined by it, and they may overflow. In most cases, generated boxes act as

containing blocks for descendant boxes. The full details of containing blocks are

covered in Containing Block (p. 147).

For floated (p. 180) or absolutely positioned (p. 178) elements (including elements

for which position is set to fixed (p. 178)), a width of autowill make the generated

box shrink to the intrinsic dimensions of its contents.

Floated Elements and Width
Previously, in CSS2, floated elements without a declared width value would not
shrink to wrap their content; instead, they’d expand to the full width of their parent
element. This behavior was changed in CSS2.1 to allow the shrink-wrapping to take
place. However, in Internet Explorer 6 and earlier versions, a floated element with
no declared width value will shrink to wrap its content as per the specifications
unless a child element has a layout (p. 158), in which case the floated parent will
expand to fill the available content width of the parent.4

It should also be noted that when a float (without a declared width) contains a
right-floated child element, it will also expand to fill the parent’s available content
width in IE browsers up to and including version 7 (Firefox up to and including
version 2.0 also exhibits this bug but, the problem appears to have been fixed as of
Firefox 3.0 Alpha 6).

Therefore, it’s always safer to specify an explicit value for the width of a floated
element where possible, and thereby to avoid the buggy behavior described above.
However, as long as you’re aware of the problems mentioned above, you’ll likely

4 A quick fix for this bug is to float the offending child element as well (where the situation allows
for it).

CSS Layout and Form
atting

find that widthless floats can be useful in certain situations, such as fluid-width
horizontal menus.

The Ultimate CSS Reference 144

No matter how the content area is positioned, its height value will be equal to the

content height if no values have been declared for height, or for min-height and

max-height.

Therefore, to ascertain the total space required to place an element on the page, add

the content area’s dimensions to any padding, borders, and margins that have been

declared. Of course, an element may have no padding, border, or margins, in which

case its dimensions will be dictated solely by its content.

If an element contains only floated or absolutely positioned elements, it will have

no content at all, and its height will be zero. We’ll discuss this more in Floating and

Clearing (p. 180).

Implementing the Box Model

The box model is best demonstrated with a short example. The calculation we’ll

use to ascertain the total space required to accommodate an element on the page

(ignoring margin collapse for the time being—see below for more on this) will be

as follows:

Total width = left margin + left border + left padding + width +

right padding + right border + right margin

Total height = top margin + top border + top padding + height +

bottom padding + bottom border + bottom margin

Here’s our example CSS—a rule set that contains declarations for all the box

properties of an element that has the class "box":

.box {

 width: 300px;

 height: 200px;

 padding: 10px;

 border: 1px solid #000;

 margin: 15px;

}

145CSS Layout and Formatting

The total size of the element above will be calculated as follows:

Total width = 15 + 1 + 10 + 300 + 10 + 1 + 15 = 352px

Total height = 15 + 1 + 10 + 200 + 10 + 1 + 15 = 252px

The above calculation is depicted in Figure 6.2, which is taken from the element

layout display from Firebug,5 the JavaScript and CSS development add-on for

Firefox.

Figure 6.2: The CSS box model in action

In Figure 6.2, we can clearly see the content area in the center, the padding around

the content area, the border area, and the margin area. The outer edge of the content

area is called the content edge or inner edge; the outer edge of the padding area is

called the padding edge; the outer edge of the border area is called the border edge;

and the outer edge of the margin area is called—you guessed it—the margin edge

or outer edge.

You can see from this short example that, for this element to fit on the page, we’ll

need a space that’s at least 352px wide and 252px high. If the space available is any

smaller than this, the element will be misplaced, or will overflow its containing

block. Note that Internet Explorer 6 and earlier versions will most likely stretch the

containing block to accommodate this extra height, and could severely disrupt the

layout. Other browsers will let the element overflow its boundaries, but will ignore

the content.

CSS Layout and Form
atting

5 http://getfirebug.com/

http://getfirebug.com/

Watch Out for Collapsing Margins
Although margins are included in the above calculations for the total space required
to place the element, note that vertically adjacent margins on static (non-positioned)
elements would collapse into the bigger margin of the elements that are adjacent
above and below. This means that the actual space required to place an element
would not necessarily extend from the margin edges of elements existing on the
page: only the biggest margin will apply, and the smaller margins will appear to
overlap the bigger margins. See Collapsing Margins (p. 148) for the full details of this
quite complicated subject.

The Ultimate CSS Reference 146

Practical Considerations of the Box Model

An important point to note is that an element that has its width set to 100% (that is,

100% of the content width of its parent element) shouldn’t have any margins,

padding, or borders applied, as this would make it far too big for the space that it

sits in. This is often overlooked by authors and can severely disrupt a page’s layout,

as content will either overflow or push elements wider than they should be.

The solution, in most cases, is to avoid adding a value for the property width (other

than auto), and to apply the margins, padding, and borders only. The width property

of a static element will default to auto, and even with padding, borders, and margins

added, it will still assume the full available content width.

Of course, this approach may not be feasible in some instances, such as cases where

the element is not a static element, and requires the definition of a specific width

value (as in the case of a floated element that doesn’t automatically expand to fill

its parent). In these cases, you have two options.

If the available space is of a fixed width, you can simply add the value of each

component together to ensure that it matches the available width. For example, if

the available space is 500px wide, and you require an element to have 20px padding,

simply set the width to 460px and the padding to 20px for that element (20 + 460

+ 20 = 500). This solution assumes that the length values specified for the element’s

box properties use the same unit of measurement, since you won’t be able to add

together a mixture of units (200px + 10%, for example, makes no sense in this

context).

147CSS Layout and Formatting

When the available content space has an unknown width—as in the case of a fluid

layout—this method can’t be used, as percentages and pixels can’t be added together.

In this case, the solution is to declare a width of 100% for the element concerned,

and to apply the padding, border, and margin values to a nested element instead.

That nested element has no width declaration, and can display the required padding,

borders, and margins without encroaching on the parent element.

Now that you have a clear understanding of the CSS box model, you should also

make yourself familiar with what’s commonly called the Internet Explorer 5 box

model (p. 156).

Containing Block
CSS rendering comprises the tasks of laying out and rendering numerous boxes.

Element boxes are positioned within a formatting context, which, by default, is

provided by the box generated by a parent element.

When we specify the positions or dimensions of element boxes, we’re doing so

relative to what’s known as the containing block, which is a very important concept

in CSS layout.

The containing block for the root element is called the initial containing block, and

has the same dimensions as the viewport (p. 141) for continuous media (such as the

screen) and the page area for paged media (such as print).

The containing block for any other element box is determined by the value of the

position property for that element.

If the value of the position property is static (the default) or relative, the

containing block is formed by the edge of the content box of the nearest ancestor

element whose display property value is one of:

■ block

■ inline-block

■ list-item

■ run-in (only in a block formatting context; see Formatting Concepts (p. 163))

CSS Layout and Form
atting

The Ultimate CSS Reference 148

■ table

■ table-cell

If the value of the position property is absolute, the containing block is the nearest

positioned ancestor—in other words, the nearest ancestor whose position property

has one of the values absolute, fixed, or relative. The containing block is formed

by the padding edge of that ancestor.

If the value of the position property is fixed, the containing block is the viewport

(for continuous media) or the page box (for paged media).

Note that although positions and dimensions are given with respect to the containing

block, a descendant box isn’t constrained by its containing block; it may overflow.

Content Edge and Padding Edge
The content edge of a box is defined by the outer limits of the content area—it
doesn’t include any padding that may exist outside the content.

The padding edge of a box is defined by the outer limits of the padding area—it
doesn’t include any borders that may exist outside the padding. If a box has no
padding, the padding edge is equivalent to the content edge.

Refer to The CSS Box Model (p. 142) for a graphic illustration of these concepts.

Collapsing Margins
Let’s explore exactly what the consequences of collapsing margins are, and how

they will affect elements on the page.

The W3C specification6 defines collapsing margins as follows:

“In this specification, the expression collapsing margins means that adjoining

margins (no non-empty content, padding, or border areas, or clearance separate

them) of two or more boxes (which may be next to one another or nested) combine

to form a single margin.”

6 http://www.w3.org/TR/CSS21/box.html#collapsing-margins

http://www.w3.org/TR/CSS21/box.html#collapsing-margins

149CSS Layout and Formatting

In simple terms, this definition indicates that when the vertical margins of two

elements are touching, only the margin of the element with the largest margin value

will be honored, while the margin of the element with the smaller margin value

will be collapsed to zero.7 In the case where one element has a negative margin, the

margin values are added together to determine the final value. If both are negative,

the greater negative value is used. This definition applies to adjacent elements and

nested elements.

There are other situations where elements do not have their margins collapsed:

■	 floated elements

■	 absolutely positioned elements

■	 inline-block elements

■	 elements with overflow set to anything other than visible (They do not collapse

margins with their children.)

■	 cleared elements (They do not collapse their top margins with their parent block’s

bottom margin.)

■	 the root element

This is a difficult concept to grasp, so let’s dive into some examples.

Collapsing Margins Between Adjacent Elements

Margins collapse between adjacent elements. In simple terms, this means that for

adjacent vertical block-level elements in the normal document flow, only the margin

of the element with the largest margin value will be honored, while the margin of

the element with the smaller margin value will be collapsed to zero. If, for example,

one element has a 25px bottom margin and the element immediately underneath it

has a 20px top margin, only the 25px bottom margin will be enforced, and the

elements will remain at a distance of 25px from each other. They will not be 45px

(25+20) apart, as might be expected.

This behavior is best demonstrated with a short example. Consider the following

code:

7 In CSS2.1, horizontal margins do not collapse.

CSS Layout and Form
atting

The Ultimate CSS Reference 150

h1 {

 margin: 0 0 25px 0;

 background: #cfc;

}

p {

 margin: 20px 0 0 0;

 background: #cf9;

}

Figure 6.3: Collapsing margins in action

As you’ll see from Figure 6.3, the gap between the elements is only 25px, and the

smaller margin has collapsed to zero. If in the above example the elements had

equal margins (say, 20 pixels each), the distance between them would be only 20px.8

There is one situation that will cause a slight deviation from the behavior of

collapsing margins: should one of the elements have a negative top or bottom margin,

the positive and negative margins will be added together to reach the final, true

margin. Here’s an example style sheet that demonstrates the concept:

h1 {

 margin: 0 0 25px 0;

 background: #cfc;

}

p {

 margin: -20px 0 0 0;

 background: #cf9;

}

The bottom margin of the h1 element is a positive number (25px), and the top margin

of the p element is a negative number (-20px). In this situation, the two numbers

are added together to calculate the final margin: 25px + (-20px) = 5px.

If the result of this calculation is a negative number, this value will have the effect

of one element overlapping the other. You could say that the negative margin pulls

8 This will also hold true for the margins between nested children and their parents.

151 CSS Layout and Formatting

the element in the opposite direction to that of a positive margin. See margin (p. 209)

for more details about negative margins.

Collapsing Margins Between Parent and Child Elements

So far, we’ve only addressed the collapsing effect on adjacent elements, but the

same process holds true for parents and children whose margins touch. By “touch,”

we mean the places at which no padding, borders, or content exist between the

adjacent margins. In the following example, a parent element has a child element

on which a top margin is set:

h1 {

 margin: 0;

 background: #cff;

}

div {

 margin: 40px 0 25px 0;

 background: #cfc;

}

p {

 margin: 20px 0 0 0;

 background: #cf9;

}

In the style sheet above, you can see that a top margin value is declared for the p

element, and in the code excerpt below, you can see that the p element is a child

of the div element:

<h1>Heading Content</h1>

<div>

 <p>Paragraph content</p>

</div>

The result of this code is illustrated in Figure 6.4.

CSS Layout and Form
atting

Figure 6.4: Collapsing margins on a child paragraph

The Ultimate CSS Reference 152

You may have expected that the paragraph would be located 60px from the heading,

since the div element has a margin-top of 40px and there is a further 20px

margin-top on the p element. You may also have expected that 20px of the

background color of the div element would show above the paragraph. This does

not happen because, as you can see in Figure 6.4, the margins collapse together to

form one margin. Only the largest margin applies (as in the case of adjoining blocks),

as we’ve already seen.

In fact we would get the same result if our div element had no top margin and the

p element had a 40px margin-top. The 40px margin-top on the p element effectively

becomes the top margin of the div element, and pushes the div down the page by

40px, leaving the p element nesting snugly at the top. No background would be

visible on the div element above the paragraph.

In order for the top margins of both elements to be displayed, and for the background

of the div element to be revealed above the p element, there would need to be a

border or padding that would stop the margins collapsing. If we simply add a top

border to the div element, we can achieve the effect we were originally looking for:

h1 {

 margin: 0;

 background: #cff;

}

div {

 margin: 40px 0 25px 0;

 background: #cfc;

 border-top: 1px solid #000;

}

p {

 margin: 20px 0 0 0;

 background: #cf9;

}

In Figure 6.5, we can see that the div element is still 40px away from the heading,

but the paragraph has been pushed a further 20px down the page, thus revealing

20px of the background of the div element (through the presence of the border).

153CSS Layout and Formatting

Figure 6.5: Adding a border to the parent

If we didn’t want a visible top border showing in the design, a 1px top padding on

the div element would have achieved the same effect. Note that the border or padding

should be applied to the parent div because a border on the paragraph would not

stop the margins from collapsing, since the paragraph’s margin is outside of the

border.

Internet Explorer and Layout
As of this writing, Internet Explorer versions 7 and below will not collapse margins
where the element has a layout. If the div in our example simply had a width set
(one of the triggers that causes an element to gain a layout), we’d get the result
shown in Figure 6.5, without the need to add padding or borders.

This is non-standard behavior for IE, and is perhaps one of the reasons why beginners
are a little confused by the concept of collapsing margins when they first come
across it. Most of the time, the elements will have a value (other than auto) for the
width property (or one of the other properties that causes an element to gain a
layout), and will not exhibit the collapsing margin behavior in IE.

The example above deals with a single parent and single child that have touching

margins, but the same approach would apply if there were several children (that is,

nested elements) that all had adjacent vertical margins: it would still mean that all

the margins would collapse into one single margin. Although the examples above

mentioned top margins, the same effect is true for bottom margins, as can be seen

below.

In the following contrived example, we’ve nested four div elements, all of which

have a 10px margin applied. Each div has a different background color, so the effects

of the margin collapse will be clearly visible:

CSS Layout and Form
atting

The Ultimate CSS Reference 154

.box {

 margin: 10px;

}

.a {

 background: #777;

}

.b {

 background: #999;

}

.c {

 background: #bbb;

}

.d {

 background: #ddd;

}

.e {

 background: #fff;

}

<div class="box a">

 <div class="box b">

<div class="box c">

<div class="box d">

<div class="box e">

The vertical margins collapse but the horizontal

 margins don't. The vertical margins also collapse

 in IE because the elements don't have a layout.

 </div>

 </div>

 </div>

 </div>

</div>

The result of the above CSS is shown in Figure 6.6.

Figure 6.6: Vertical margins after collapse

As you can see in this example, the effect of our CSS is quite dramatic: all the vertical

margins have collapsed to form a single, 10px margin. Unlike the horizontal margin

example, where all the margins were visible, the vertical margins show no such

colors at all, thanks to the background-color that has been applied to each element.

155CSS Layout and Formatting

The whole block will be positioned 10px from other in-flow elements on the page,

but each nested block will collapse its margins into a single margin.

As discussed earlier, the simplest way to stop the margin collapse from occurring

is to add padding or borders to each element. If we wanted 10px margins on each

element we could simply use a 9px margin and 1px of padding to get the result we

wanted:

.box {

 margin: 9px;

 padding: 1px;

}

The result of that small change will “un-collapse” the vertical margins, as you can

see in Figure 6.7.

Figure 6.7: Margins haven’t collapsed

Again, it’s important to consider the effects that layout in Internet Explorer would

have in the above demonstrations. Should the elements in the first example (Figure

6.6) have a layout in IE, the result would be exactly as shown in Figure 6.7. It’s also

worth noting that in browsers other than IE, the same effect would occur if the

overflow property was added with a value other than visible.

Wrapping It Up

Although the margin collapse behavior is at first a little unintuitive, it does make

life easier in the case of multiple nested elements, where the behavior is often

desirable. As shown above, easy methods are available to help you stop the collapse

if required.

CSS Layout and Form
atting

The Ultimate CSS Reference 156

The Internet Explorer 5 Box Model

Relevance of the Internet Explorer 5 Box Model
This topic is included mainly for a historical reference, as Internet Explorer 5.5 and
earlier versions have less than 1% market share today. However, Internet Explorer
6 and 7, and Internet Explorer 5 for Mac, all use this box model when they’re
operating in quirks mode (p. 17), so the topic still has some relevance today.

In the CSS box model (p. 142), as defined by the CSS2.1 specifications, an element

ascertains its total dimensions by adding together the content area dimensions plus

any margin, padding, or borders that may have been declared. Conversely, if we

use the Internet Explorer 5 box model (the IE5 box model for short),9 padding and

borders will shrink the content area’s dimensions instead of increasing the element’s

total dimensions.

To demonstrate, the following rule sets several properties that affect the dimensions

of .box elements:

.box {

 width: 200px;

 height: 150px;

 padding: 10px;

 border: 1px solid #000;

 margin: 15px;

}

The total size of the element, using the IE5 box model, will be calculated as follows:

Total width = 200 + 15 + 15 = 230px (width + margins)

Total height = 150 + 15 + 15 = 180px (height + margins)

It follows that the available content area is reduced, because padding and borders

have to be subtracted from the dimensions that were declared. The available content

size, using the IE5 box model, would be calculated as follows:

9 Although we’re calling it the IE5 box model, it’s also known as the broken box model.

157CSS Layout and Formatting

Available content width = 200 - 10 - 10 - 1 - 1 = 178px

Available content height = 150 - 10 - 10 - 1 - 1 = 128px

Compare this with the dimensions for the correct box model in Table 6.1, and you

can see that this method of calculation will make a considerable difference to the

element’s size.

Table 6.1: Box Model Dimensions

IE5 Box ModelStandard Box Model

178px200pxAvailable content width

128px150pxAvailable content height

230px252pxTotal width required

180px202pxTotal height required

The size difference can be seen clearly in Figure 6.8.

Figure 6.8: The size difference between box models

The fundamental differences between these two box models means it’s important

that you understand and are aware of both models when you’re creating code.

Internet Explorer for Windows 5 (including 5.5) uses the IE5 box model at all times,

but Internet Explorer 6 and 7, and Internet Explorer 5 for Mac, use it only when in

quirks mode.

CSS Layout and Form
atting

The Ultimate CSS Reference 158

You may well be wondering why two box models exist. To answer this question,

we need to travel back in time to the creation of Internet Explorer 5 for Windows,

when Microsoft decided that the box model would contain borders and padding

within the stated dimensions, rather than increasing them. This approach wasn’t

as silly as it may seem at first glance: in cases in which you have an element with

a width of 100%, the IE5 box model allows you to add padding and borders safely.

Compare this to the correct CSS box model, in which you cannot add any padding

or borders to an element with a width of 100% without breaking the layout.

Although the IE5 box model appears superior in this example, the correct box model

is more useful in nearly all other cases. No other browser implemented the IE5 box

model, and Microsoft eventually complied with the CSS standards and corrected

its box model implementation in Internet Explorer 6 (when in standards mode).

Before that, though, there was a long period in which CSS authors were forced to

deal with two competing box model implementations—a situation that explains

why so many CSS hacks (p. 391) were created.

As the IE5 box model had some merit, it has been proposed that CSS3 will provide

authors with the choice of specifying which model to use via a box-sizing

property.10 Firefox, Opera, and Safari have all implemented versions of this property,

which you can read more about in -moz-box-sizing (p. 375).

The Internet Explorer hasLayout Property
In a perfect world, we shouldn’t need to know anything about the hasLayout

property—after all, it’s an internal component of the Windows Internet Explorer

rendering engine. Its effect, however, is far reaching, and has major consequences

for the appearance and behavior of elements, affecting how an element bounds its

content and reacts with its neighbors.

This topic is solely concerned with Internet Explorer for Windows.

10 http://www.w3.org/TR/css3-ui/#box-sizing

http://www.w3.org/TR/css3-ui/#box-sizing
http://www.w3.org/TR/css3-ui/#box-sizing

159CSS Layout and Formatting

What Is the hasLayout Property?

In Internet Explorer, an element is either responsible for sizing and arranging its

own contents, or relies on a parent element to size and arrange its contents.

In order to accommodate these two different concepts, the rendering engine makes

use of a property called hasLayout that can have the values true or false for the

element concerned. We say an element gains a layout or has a layout when the

hasLayout property has the value true.11

When an element has a layout, it is responsible for sizing and positioning itself and

possibly any descendant elements.12 In simple terms, this means that the element

takes more care of itself and its contents, instead of relying on an ancestor element

to do all the work. Therefore, some elements will have a layout by default, though

the majority do not.

Elements that are responsible for arranging their own contents will have a layout

by default, and include the following (this list is not exhaustive):

■ body and html (in standards mode)

■ table, tr, th, td

■ img

■ hr

■ input, button, file, select, textarea, fieldset

■ marquee

■ frameset, frame, iframe

■ objects, applets, embed

The main reasons Microsoft gives for the fact that not all elements have a layout by

default are “performance and simplicity.” If all elements had a layout by default, a

detrimental effect on performance and memory usage would result.

11 Once an element has a layout, the hasLayout property can be queried by the rendering engine or
through scripting.

12 If a descendant element also has a layout it is responsible for sizing itself and any descendants,
but it is positioned by the ancestor element’s layout.

CSS Layout and Form
atting

The Ultimate CSS Reference 160

So why should any of us even care about the hasLayout property? Because many

Internet Explorer display inconsistencies which can be attributed to this property.

In most cases, the issues caused by elements that lack a layout are easy to spot: the

content is often misplaced or completely missing. For example, when an element,

such as a div, that doesn’t have a layout by default, contains floated or absolutely

positioned content, it will often exhibit strange and buggy behavior. The types of

strange behavior that can arise are varied, and include such behaviors as missing

or misplaced content, or elements that fail to redraw fully while a window is moved

or scrolled.13

If you notice that a piece of your content appears and disappears, and sections of

the page only get half-drawn, these are good indications that an element requires a

layout. When the key element gains a layout, the problem miraculously goes away.

In fact, 99% of the Internet Explorer CSS bugs you encounter on a daily basis can

be fixed using a hasLayout fix in the correct place. A hasLayout fix involves nothing

more than declaring a CSS property that causes an element to gain a layout, when

it wouldn’t ordinarily have a layout by default.

The simplest way for an element to gain a layout is for it to have a dimensional CSS

property applied—for example, a width or height. However, in situations where

you don’t wish to apply a specific width or height to the element, there are several

other CSS properties that, when you apply them to the element, will cause that

element to gain a layout.

Those other properties are:

■	 display: inline-block

■	 height: (any value except auto)

■	 float: (left or right)

■	 position: absolute

■	 width: (any value except auto)

■	 writing-mode: tb-rl

13	 A detailed description of some examples of these behaviors can be found at the Position Is

Everything web site at http://positioniseverything.net/explorer.html.

http://positioniseverything.net/explorer.html

161 CSS Layout and Formatting

■	 zoom: (any value except normal)15

Internet Explorer 7 has some additional properties that cause an element to gain a

layout (this is not an exhaustive list):

■	 min-height: (any value)

■	 max-height: (any value except none)

■	 min-width: (any value)

■ max-width: (any value except none)

■ overflow: (any value except visible)

■ overflow-x: (any value except visible)

■ overflow-y: (any value except visible)16

■	 position: fixed

Declaring any of these CSS properties will cause the element to gain a

layout—assuming, of course, that the property is valid for the element concerned.

For example, we can’t apply a height to inline elements unless the document is

being run in quirks mode (p. 17).

It’s not a good idea to give all elements a layout—not just because of the performance

and memory issues already mentioned, but because a number of other unwanted

CSS side effects will occur. For example:

■	 Children of absolutely positioned or floated elements will not shrink to wrap

their content when the child has a layout.

■	 Static content positioned next to a float will not wrap around the float, but will

instead form a rectangular block to the side of the float.

More examples of unwanted behavior are documented on the MSDN web site.17

15 zoom and writing-mode are proprietary Internet Explorer CSS properties, and will not pass CSS
validation.

16 overflow-x and overflow-y are proposed property names for CSS3, but have been proprietary
CSS properties in Internet Explorer since version 5.

17	 http://msdn2.microsoft.com/en-us/library/bb250481.aspx

CSS Layout and Form
atting

http://msdn2.microsoft.com/en-us/library/bb250481.aspx

The Ultimate CSS Reference 162

Debugging hasLayout Issues

If you notice that your web page is behaving strangely in Internet Explorer, try

setting a CSS property for an element in order to cause it to gain a layout, and see

if the problem vanishes.

Some skill is involved in identifying the correct element to which the property

should be applied. With experience, it can become easy to identify the culprit—it’ll

usually be a parent container for which no explicit width is set, or whose width is

defined by margins alone. If this parent element contains floated or absolute

elements, it’s likely to be the one causing the problem; the problems are likely to

exist because it’s not taking proper care of its child elements.

A useful approach to debugging layout issues is to set the proprietary CSS property

zoom (p. 380) to 1 for elements within the document, one at time, in order to isolate

the element that’s causing the problem. If you set the property on an element, and

the issue is resolved, you know you’re on the right track. The zoom property is useful

because, as well as being a property that triggers an element to gain a layout, in

most cases, setting it will not alter the look of the page in any other way (apart from

possibly fixing the bug that you’re experiencing). A process of elimination can be

used to narrow the problem down quite quickly.

Once you have found the element that’s causing the problem, you can apply the

necessary fix. The preferred approach is to set one or more dimensional CSS

properties on the element. However, if dimensions can’t be applied normally, a

workaround must be employed.

For Internet Explorer 7, the best approach is to set the min-height property to 0;

this technique is harmless, since 0 is the initial value for the property anyway.

There’s no need to hide the property from other browsers—which is definitely not

the case with our next suggestion!

The standard approach for triggering an element to gain a layout in Internet Explorer

6 and earlier versions is to set the height property to 1%, as long as the overflow

property is not set to anything except visible. This approach exploits a bug in

these browser versions whereby if the overflow property is set to the default value

of visible, the height of a containing box will expand to fit its contents regardless

163CSS Layout and Formatting

of the height property’s value. However, most other browsers will respect the height

value of 1%, which is usually not what you want them to do, so this declaration will

need to be hidden from all other browsers.

In previous years, the technique of setting height to 1%, and hiding the declaration

from all browsers except Internet Explorer 6 and earlier versions, was known as the

Holly hack.18 These days, the recommended method for specifying CSS declarations

for Internet Explorer only is through the use of conditional comments (p. 394).

The good news is that Internet Explorer 7 is a lot more robust than previous versions,

and many (though not all, unfortunately) of the issues concerning layout have

disappeared—you’ll need far fewer fixes than you might have in previous versions

of the browser. For more information about the layout issue, see “On Having Layout”

at the Satzansatz web site.19

Formatting Concepts
This section describes how boxes are laid out in the normal document flow. It

applies to elements whose float property has the value none, and whose position

property has the value static or relative, although in the latter case, additional

factors described in Relative Positioning (p. 176) must be taken into consideration.

As we already saw in CSS Layout and Formatting (p. 139), just as there are block-level

elements and inline elements in HTML, CSS boxes are also either block or inline

(although there are subtypes of each), as determined by the element’s display

property (p. 264) value.

The values block, list-item, and table will cause an element to generate a block

box and participate in a block formatting context.20

Other values, such as inline and inline-table, cause elements to generate inline

boxes, which participate in an inline formatting context.

18 http://www.communitymx.com/content/article.cfm?page=2&cid=C37E0
19 http://www.satzansatz.de/cssd/onhavinglayout.html
20 List item (p. 168) and table (p. 168) formatting are described separately, since they’re special cases.

CSS Layout and Form
atting

http://www.communitymx.com/content/article.cfm?page=2&cid=C37E0
http://www.satzansatz.de/cssd/onhavinglayout.html
http://www.satzansatz.de/cssd/onhavinglayout.html

The Ultimate CSS Reference 164

The value run-in is special, because it can make the generated box’s formatting

either block or inline. A run-in box that doesn’t contain a block box, and is followed

by a sibling block box in the normal document flow, becomes the first inline box

of the sibling block box (unless the sibling is or contains a run-in). Otherwise, the

run-in box becomes a block box. Run-in boxes are mainly intended for run-in

headings. See display (p. 264) for more information about run-in and browser

support.

The value inline-block generates a block box that’s laid out as an inline box. On

the inside, the box is a block box, but on the outside, it’s an inline box. Similarly,

the value inline-table generates a table that’s laid out as an inline box.

The value none is a special case, because an element with this display value will

not generate any sort of box at all. This means that no descendant element will be

able to generate a box. It’s important to note that applying the value none isn’t the

same as using an invisible box; if you use none, no box will be generated at all.

Elements whose position properties have the value absolute (p. 178) or fixed

(p. 178) are laid out in a very different fashion, as are floated or cleared (p. 180)

elements.

An absolutely positioned or floated element will, however, establish a new

containing block and formatting context for its static children.

Block Formatting
In a block formatting context, boxes are laid out vertically, starting at the top.

Block-level elements—elements with a display property value of block, list-item,

table, and (in certain circumstances) run-in—participate in block formatting

contexts.

A block-level element with a display property value other than tablewill generate

a principal box block. A principal box will contain either block boxes or inline

boxes as children, never both. If the element contains a mix of block-level and inline

children, anonymous block boxes will be generated where necessary, so that the

principal box will only contain block boxes. Consider the following example:

165CSS Layout and Formatting

<div>

 <p>A paragraph</p>

 Some text in an anonymous box

 <p>Another paragraph</p>

</div>

The HTML snippet above will, by default, generate a principal box for the div

element and the two p elements, plus an anonymous block box for the text that

appears between the paragraphs, as seen in Figure 6.9.21

Figure 6.9: An anonymous block box

An anonymous block box inherits its properties from the enclosing non-anonymous

box—the div box in this example. Any non-inherited properties are set to their

initial (default) values.

The principal box becomes the containing block (p. 147) for non-positioned

descendant boxes, and it’s also the box that’s affected for any value of position

other than static, and for any value of float other than none.

In a block formatting context the vertical distance between two sibling boxes is

determined by their respective margin properties; vertical margins between adjacent

block boxes collapse if there are no borders or padding in the way. For more

information, see Collapsing Margins (p. 148).

In a left-to-right environment, the left outer edge of each block box touches the left

edge of the containing block. In a right-to-left environment, the right edges touch.

This happens even if there are floated elements in the way, except if the block box

21 Note that mixing block and inline content like this is semantically questionable, and it’s not
something we recommend. This example is provided just to illustrate how CSS handles the
situation.

CSS Layout and Form
atting

The Ultimate CSS Reference 166

establishes a new block formatting context. In that case, the block box becomes

narrower to accommodate the floated elements.

Inline Formatting
Just as anonymous block boxes are sometimes created in a block formatting context,

anonymous inline boxes can be created when necessary. Here’s an example of the

automatic creation of anonymous inline boxes:

<p>In 1912, Titanic sank on her maiden voyage.</p>

Since there’s a child element—the em element, which generates an inline box of its

own—two anonymous inline boxes will be generated to contain the text nodes that

are immediate children of the p element, as shown in Figure 6.10.

Figure 6.10: Anonymous inline boxes

An anonymous inline box inherits its properties from its parent block box—the p

element box in this example. Any non-inherited properties are set to their initial

values.

In an inline formatting context, boxes are laid out horizontally, starting at the top

of the containing block. Horizontal margins, padding, and borders can exist between

the boxes, but vertical margins are ignored for inline boxes. Dimensions (width and

height) can’t be specified for inline boxes.22

The inline boxes that form a single line are enclosed by a rectangle that’s called a

line box. Boxes within a line box are aligned vertically according to their

vertical-align properties. A line box is always tall enough to accommodate all

its inline boxes.

22	 This advice applies to non-replaced inline boxes. We can specify dimensions for replaced inline
boxes, such as images. See Replaced Elements (p. 175) for more information.

167CSS Layout and Formatting

When several inline boxes can’t fit into a single line box, they’re distributed over

two or more stacked line boxes.

When a single inline box can’t fit into a line box, it’s split into two or more boxes

that are distributed over as many line boxes as necessary. Margins, borders, and

padding aren’t applied where such splits occur.23 Consider the following example

markup and CSS:

<p>Text in a narrow column can break.</p>

em {

 margin: 0 1em;

 padding: 0 1em;

 border: 1px solid #000;

}

If margins, padding, and borders are set on that em element, the result may not be

what the author intended if the element’s box is split into two line boxes as a result

of line wrapping—Figure 6.11 shows the potential result.

Figure 6.11: A split inline box

As you can see, the margin and padding are applied to the left of the word “narrow”

and to the right of the word “column.” The borders are applied on three sides of

each of the two inline boxes.

If the total width of the inline boxes is less than the width of the line box, the

direction and text-align properties control how the boxes are distributed inside

the line box.

CSS Layout and Form
atting

23 CSS3 may provide more control in such cases.

The Ultimate CSS Reference 168

The left and right edges of a line box normally touch the edges of its containing

block. When there are floats in the way, however, the line boxes adjacent to the

floats are shortened—see Floating and Clearing (p. 180) for more information.

Although line boxes are stacked with no space between them, we can affect the

height of a line box with the line-height property. If the computed value of the

line-height property is greater than the vertical distance occupied by the inline

boxes in a line box, the line box is vertically centered within the specified line

height. Half the difference is added at the top of the line box and half at the bottom.

This behavior corresponds to the typographical concept of half-leading, where strips

of lead (hence the name) or brass were inserted between the lines of type to increase

the line spacing.

List Formatting
An element with a display property value of list-item generates a principal box

just as any other block box. It will also generate an additional box for the list marker.

This box is generated outside the principal box and can’t be styled independently

in CSS2.1.

There are three properties (p. 285) that apply only to elements with a display property

value of list-item, but properties like margin-left and padding-left (in a

left-to-right reading environment) also affect the way in which list items are rendered.

In addition to the available list item properties, generated content (p. 347) can also

be useful for more advanced list numbering.

Table Formatting
Tables are the most complex elements in HTML, and table formatting is among the

most complex parts of CSS.

CSS defines a number of objects that are involved in table formatting, as Figure 6.12

reveals.

169CSS Layout and Formatting

Figure 6.12: Table formatting objects

A table may contain a caption, row groups, and column groups. A row group contains

rows, while a column group contains columns. Rows and columns contain cells.

Tables are rendered as layers in a specified order from the bottom up: table, column

groups, columns, row groups, rows, and cells.

The table model in HTML is row-centric. Although you can specify columns and

column groups in markup, cells are structurally contained within rows. Columns

and column groups are more esoteric items that are derived from the set of cells in

all rows of the table.

A table can be included in a formatting context as either a block-level or inline-level

box. It can have padding (p. 211), borders (p. 220), and margins (p. 200).

A table element generates an anonymous box that encompasses the table box and

the caption box (if they’re present). The caption box is rendered outside the table

box, but is inextricably tied to it. When a table is repositioned, it’s the outer

anonymous box that’s moved to enable the caption to follow the table.

Captions inherit inheritable properties from the table. A caption is formatted as a

block box, but it doesn’t behave like general block boxes in all respects. If a run-in

element precedes the table, it will not run into a caption box.

CSS Layout and Form
atting

The Ultimate CSS Reference 170

The placement of the caption can be controlled via the caption-side property. The

valid values in CSS2.1 are top and bottom, which should be fairly self-explanatory.

The internal elements of tables—row groups, column groups, rows, columns, and

cells—generate regular boxes that can have borders. Cells can also have padding,

but internal table objects don’t have margins.

Ten of the valid values for the display property denote table-related formatting

styles. These values, and the HTML element types with which they’re associated

by default, are shown in Table 6.2.

Table 6.2: Table display Property Values

HTML ElementProperty Value Element Type

tabletableTable

n/ainline-table

captiontable-captionCaption

theadtable-header-groupRow group

tfoottable-footer-group

tbodytable-row-group

trtable-rowRow

colgrouptable-column-groupColumn group

coltable-columnColumn

tdtable-cellCell

th

171 CSS Layout and Formatting

These display values can also be specified for other element types than those that

belong to the HTML table model; however, Internet Explorer versions up to and

including 7 don’t support these values.

When table-related display values are used for non-table elements, anonymous

table-related elements may have to be generated in order to render the elements

correctly. Here, we’ve listed situations in which anonymous table-related elements

may be created:

■	 Cells must have a row as their parent. A row object will be generated as the

parent of one or more consecutive cells that don’t have a row as their parent.

■	 Rows must have a row group or a table as their parent. Columns must have a

column group or a table as their parent. Row groups and column groups must

have a table as their parent. A table object will be generated as the parent of one

or more consecutive objects of those types that don’t have the required parent.

■	 If a child of a table object is not a caption, row group, column group, row, or

column, a row object will be generated as the parent of that child, and any

consecutive siblings that require a row as their parent.

■	 If a child of a row group object isn’t a row, a row object will be generated as the

parent of that child and any consecutive siblings that require a row as their

parent.

■	 If a child of a row object is not a cell, a cell object will be generated as the parent

of that child and any consecutive siblings that are not cells.

Properties that Apply to Column and Column-group Elements

Only a few properties can be applied to elements with a display property value of

table-column or table-column-group:

■	 the border properties, but only in the collapsing borders model (see below)

■	 the background properties, where cells and rows have transparent backgrounds

■	 the width property

■	 the visibility property value collapse—any other visibility values are ignored

for columns and column groups

CSS Layout and Form
atting

The Ultimate CSS Reference 172

Table Width Algorithms

Unlike other block boxes, a table with zero horizontal margins and a width property

that’s set to auto doesn’t size to fill its containing block. Instead, the table size will

be determined by its contents. A table can be horizontally centered by setting

margin-left and margin-right to auto, though.

There are two very different algorithms for determining the widths of table columns:

the fixed table layout algorithm and the automatic table layout algorithm. These are

specified with the table-layout property (which takes values of fixed, for fixed

layouts, and auto, for automatic layouts); its initial value is auto. If the table’s width

is specified as auto, the automatic table layout algorithm is normally used. In the

case of block-level tables (when display is set to table), user agents are allowed

to use the fixed table layout algorithm anyway, but they aren’t required to.

With the fixed table layout algorithm, the widths of columns and of the table are

not governed by the contents of the table’s cells. Instead, the width of each column

is determined as follows:

■	 Column objects whose width is not auto set the width for that column.

■	 A cell in the first row, whose width is not auto, sets the width of the column it

belongs to. If the cell spans more than one column, the width is divided over

the columns.

■	 Any remaining columns equally divide the remaining horizontal space, minus

any borders or cell spacing.

The width of the table is the greater of the value of the table’s width property, and

the sum of the column widths (plus borders or cell spacing). If the table is wider

than the columns, the extra space will be distributed over the columns.

Don’t Omit Cells!
Since the cells in the first row of the table are used to determine the column widths,
you shouldn’t omit any cells from the first row if you use the fixed table layout
algorithm. The behavior in such case is undefined by the CSS2.1 specification.

173CSS Layout and Formatting

The automatic table layout algorithm usually requires more than one pass. The

CSS2.1 specification suggests an algorithm for determining column widths,24 but

user agents are not required to use it.

The suggested algorithm for determining column widths examines every cell in the

entire table, computing the minimum and maximum widths required for rendering

each cell. These values are then used to determine how wide each column should

be, which in turn may decide the width of the table itself.

Performance and Automatic Table Layouts
Since every single cell must be inspected, the automatic table layout algorithm can
become very time-consuming when it’s calculated for a table with a large number
of rows and/or columns.

Table Height Algorithms

If the table’s height property has a value other than auto, and the specified height

differs from the sum of the row heights plus borders or cell spacing, the behavior

is undefined.

Percentage values for the height property are undefined for rows, row groups, and

cells.

The vertical-align property of each cell determines its alignment within the row.

Only the values baseline, top, bottom, and middle are allowed. For any other value,

baseline will be used.

Borders On Table Objects

There are two different models in CSS2 for rendering borders around internal table

objects: the separated borders model and the collapsing borders model. We can

choose the model we prefer by using the border-collapse property, and setting

the value to separate (the initial value) or collapse.

24 http://www.w3.org/TR/CSS21/tables.html#auto-table-layout

CSS Layout and Form
atting

http://www.w3.org/TR/CSS21/tables.html#auto-table-layout

The Ultimate CSS Reference 174

In the separated borders model only cells (and the table itself) can have borders;

rows, row groups, columns, and column groups cannot. Borders are drawn

individually around the cells and the cells are separated by the vertical and

horizontal distances specified by the border-spacing property. In the space between

cell borders, the backgrounds of rows, row groups, columns, and column groups

are invisible. Only the table background is visible in the inter-cell spacing. Figure

6.13 shows an example of a table that’s rendered using the separated borders model.

Figure 6.13: Rendering a table with separated borders

Here’s the relevant CSS for the table:

table {

 border-collapse: separate;

 border-spacing: 1em 0.5em;

 background-color: #ddd;

}

Another property that applies in the separated borders model is the empty-cells

property. It controls whether cells that lack visible content have borders and

backgrounds (if the value is show, the initial value) or not (if the value is hide).

Carriage returns, line feeds, tabs, and blanks are not considered to be visible content,

although a non-breaking space is.

In the collapsing borders model, the cells aren’t separated from one another and

their borders—along with borders of rows, row groups, columns, column groups

and the table itself—collapse (or overlap) in a rather complicated way. An example

of a table to which the collapsing borders model is applied is shown in Figure 6.14.

175CSS Layout and Formatting

Figure 6.14: Rendering a table with collapsed borders

With this model, quite a few borders may be specified in such a way that they would

be rendered in the same place. The CSS2.1 specification provides an algorithm for

border conflict resolution—that is, which border will win, or be rendered, in these

situations. Very broadly speaking, the most eye-catching border will be rendered,

unless at least one of the borders has border-style set to hidden, in which case no

border will be rendered.

If none of the borders are hidden, wide borders win over narrow borders. If two or

more borders have the same width, the border-style property decides which one

will be rendered. The styles are preferred in the following order: double, solid,

dashed, dotted, ridge, outset, groove, and inset. Borders with border-style set

to none have the lowest priority, and will never win over other border styles—even

if they have a large width value.

If there is still no winner, the algorithm looks at the objects for which the borders

are set. The preferred order is: cell, row, row group, column, column group, and

table.

The border-spacing and empty-cells properties are ignored when the collapsing

borders model is used.

Replaced Elements
A replaced element is any element whose appearance and dimensions are defined

by an external resource. Examples include images (tags), plugins (<object>

CSS Layout and Form
atting

The Ultimate CSS Reference 176

tags), and form elements (<button>, <textarea>, <input>, and <select> tags). All

other elements types can be referred to as non-replaced elements.

Replaced elements can have intrinsic dimensions—width and height values that

are defined by the element itself, rather than by its surroundings in the document.

For example, if an image element has a width set to auto, the width of the linked

image file will be used. Intrinsic dimensions also define an intrinsic ratio that’s

used to determine the computed dimensions of the element should only one

dimension be specified. For example, if only the width is specified for an image

element—at, say, 100px—and the actual image is 200 pixels wide and 100 pixels

high, the height of the element will be scaled by the same amount, to 50px.

Replaced elements can also have visual formatting requirements imposed by the

element, outside of the control of CSS; for example, the user interface controls

rendered for form elements.

In an inline formatting context, you can also think of a replaced element as being

one that acts as a single, big character for the purposes of wrapping and layout. A

width and height can be specified for replaced inline elements, in which case the

height of the line box in which the element is positioned is made tall enough to

accommodate the replaced element, including any specified box properties.

Positioning
In CSS2, each box has a position in three dimensions. Three positioning schemes

are used for the horizontal and vertical positioning (along the x and y axes) of

boxes—the normal flow (p. 163) (which includes relative positioning (p. 176)), floating

(p. 180), and absolute positioning (p. 178) (which includes fixed positioning (p. 178)).

The box’s stack level (p. 179) determines its position on the z axis.

Relative Positioning
An element whose position property has the value relative is first laid out just

like a static element. The rendered box is then shifted vertically (according to the

177CSS Layout and Formatting

top or bottom property) and/or horizontally (according to the left or right

property).

Only the Box Is Shifted
As far as the flow is concerned, the element is still in its original position. If the
relative shift is significant, it will leave a “hole” in the flow, in which case the
rendered box may overlap other content.

The properties top, right, bottom, and left can be used to specify by how much

the rendered box will be shifted. A positive value means the box will be shifted

away from that position, towards the opposite side. For instance, a left value of

20px shifts the box 20 pixels to the right of its original position. Applying a negative

value to the opposite side will achieve the same effect: a right value of -20px will

accomplish the same result as a left value of 20px. The initial value for these

properties is auto, which makes the computed value 0 (zero)—that is, no shift

occurs.

Evidently, it’s pointless to specify both left and right for the same element, because

the position will be over-constrained. If the content direction is left to right, the

left value is used, and right will be ignored. In a right-to-left direction, the right

value “wins.” If both top and bottom are specified, top will be used and bottom

will be ignored.

Since it’s only the rendered box that moves when we relatively position an element,

this positioning scheme isn’t useful for laying out columns of content. Relative

positioning is commonly used when we need to shift a box a few pixels or so,

although it can also be useful, in combination with negative margins on floated

elements, for some more complex designs.

Control Your Containing Blocks
One side effect of relative positioning is quite handy: a relatively positioned element
is “positioned,” which means it becomes the containing block for any absolutely
positioned descendants. This gives us an easy-to-use tool for controlling the position
of our containing blocks: just set position to relative without moving the box at
all.

CSS Layout and Form
atting

The Ultimate CSS Reference 178

Absolute Positioning
An element whose position property has the value absolute is said to be absolutely

positioned, and is completely removed from the document flow: it doesn’t affect

subsequent elements at all. It’s positioned with respect to its containing block (p. 147),

and it establishes a new containing block for normal flow children, and for

descendants whose position property is set to absolute.

The top, right, bottom, left, width, and height properties determine the position

and dimensions of an absolutely positioned element.

Both the position and the dimensions can be expressed using all four of the positional

properties (top, right, bottom, left).25 Alternatively, you can specify the position

of one corner of the box using top or bottom in combination with left or right,

and you can specify the dimensions using width and (optionally) height.

An absolutely positioned element will overlap other content unless we make room

for it in some way; for instance, by setting margins or padding on other elements.

When several absolutely positioned elements occupy the same location, they’ll be

stacked according to a stacking context (p. 179).

Absolute positioning also makes it possible to place an element partly or entirely

outside the viewport (p. 141). This technique, which is known as the off-left

technique, is sometimes used intentionally to hide content from visual user agents

while keeping it visible for those using assistive technologies such as screen

readers.26

Fixed Positioning
Fixed positioning is a subcategory of absolute positioning. An element whose

position property is set to fixed always has the viewport (p. 141) as its containing

block. For continuous media, such as a computer screen, a fixed element won’t

25 This capability isn’t supported by Internet Explorer versions up to and including 6.
26 Setting display to none isn’t recommended, since some screen readers won’t announce such

elements.

179CSS Layout and Formatting

move when the document is scrolled. For paged media, a fixed element will be

repeated on every page.

Internet Explorer Compatibility
Fixed positioning isn’t supported by Internet Explorer 6 or prior versions.

Stacking Contexts
Although we tend to regard a web page as a two-dimensional entity, boxes are

positioned in three dimensions. The third dimension is the z axis, which is

perpendicular to the screen.

Positioned elements can overlap, since they can be rendered at the same position.

Each box has an associated stack level, which is its position along the z axis, and

belongs to a stacking context. A box with a higher stack level is rendered “in front

of” a box with a lower stack level; in other words, it’s rendered closer to a user

facing the viewport (p. 141). A stack level can also be negative.

We can specify the stack level via the z-index property. The value auto means the

box will have the same stack level as its parent, and implies that the box doesn’t

establish a new stacking context. A value that’s provided as an integer specifies an

explicit stack level, and causes the box to establish a new local stacking context.

The box itself has the stack level 0 in this new context.

A stacking context consists of seven different layers (from bottom to top):

1. the background and borders of the element that establishes the stacking context

2. the stacking contexts of descendants with negative stack levels

3. block-level descendants in the normal flow

4. floated descendants and their contents

5. inline-level descendants in the normal flow

6. positioned descendants whose z-index is auto or 0

7. the stacking contexts of descendants with positive stack levels

CSS Layout and Form
atting

The Ultimate CSS Reference 180

A stacking context is also generated by any positioned element (including relatively

positioned elements) whose computed z-index value is anything other than auto.

Boxes within a stacking context can’t occur between two boxes that belong to another

stacking context.

Floating and Clearing
A floated element is one whose float property has a value other than none. The

element can be shifted to the left (using the value left) or to the right (using the

value right); non-floated content will flow along the side opposite the specified

float direction.27

The floated box is shifted to the left or right until its margin edge touches the padding

edge of the containing block, or the margin edge of another floated element. If the

floated element is within a line box, the top of the floated box is aligned with the

top of the line box. If there isn’t enough horizontal room left for non-floated content

to flow alongside the floated box on the current line, it’s shifted down until it fits,

or there are no more floated elements.

Defining the Margin Edge
The margin edge of a box surrounds the margin of the box. If the box has no margins,
the margin edge is the same as the border edge. See The CSS Box Model (p. 142) for
more information.

A floated box is taken out of the flow, so it doesn’t affect the block-level boxes

around it. Line boxes located next to a floated box, however, are shortened to make

room for the float. A containing block will not expand to accommodate a floating

child box, unless the containing block is also floating, or has its overflow property

set to something other than visible.28

27	 Contrary to what some may think (or wish for), float does not support the value center.
28	 In Internet Explorer 6 and prior versions, the overflow property does not cause the containing

block to expand as described here.

181 CSS Layout and Formatting

Figure 6.15 shows a schematic view of the following HTML fragment, in which the

image is floated to the left:

<p>

 text text … text text

</p>

<p>text text … text text</p>

Figure 6.15: A floated element

A floated box can have margins like any normal box, but those margins will never

collapse with the margins of adjacent boxes.

Negative margins on floated boxes behave slightly differently from negative margins

on non-floated boxes. If the negative margin is on the same side as the float direction

(for example, a negative left margin on a box that’s floated to the left), or the top or

bottom of the box, the effect is to pull the box further in that direction. This enables

the floated box to move outside the boundaries of its containing block, which means

that this technique can be used to create an overlapping effect. Care must be taken,

though, because the final appearance of elements floated in this way may differ

between user agents.

If the negative margin is applied to the side that’s opposite the float direction (for

example, a negative right margin is applied on a box that’s floated to the left), it

moves the margin further inside the element itself (without changing the element’s

width), which causes floated elements adjacent to the element to overlap its content.

CSS Layout and Form
atting

The Ultimate CSS Reference 182

This approach can be used to create layout effects such as the multi-column layout

documented on A List Apart.29

Clearing Floated Elements

To force an element to start below any floated elements, we can use the clear

property with a value of left, right, or both. An element whose clear property

is set to left will start below all left-floated boxes in the same block formatting

context, while a clear value of right will clear all right-floated boxes. If clear is

set to both, the element will start below any floated box in that context. Figure 6.16

shows the example above, but this time, the second paragraph has a clear value of

left.

Figure 6.16: A cleared element

To achieve this clearing, we add space above the cleared element’s top margin until

it’s clear of the affected floated boxes. As a result, we can’t use the top margin on

the cleared element if we want a specific amount of space between it and the floated

box. Space is added above the cleared element’s top margin until it’s free of the

float, but that’s all. If we want to create space beneath the floated box, we must set

the bottom margin of the floated element, or set top padding on the cleared element.

29 http://www.alistapart.com/articles/negativemargins/

http://www.alistapart.com/articles/negativemargins/

183CSS Layout and Formatting

Internet Explorer for Windows will automatically clear all floated children of an

element that has a layout, though this implementation disagrees with the CSS

specification.

See The Internet Explorer hasLayout Property (p. 158) for more information about

IE and layout.

Floating Versus Absolute Positioning for Multi-column Layouts

Floated boxes were intended to be used primarily for floating images so that text

would flow around them. Nowadays, float is commonly used for the purpose of

page layout; for example, floating the columns in a multi-column layout.

If the source order is the same as the presentational order, we can float each column

to the left. In a narrow viewport, where there isn’t enough room for all columns to

appear side by side, one or more columns on the right-hand side will drop below

the others. Although this result may not be aesthetically pleasing, it has the advantage

of avoiding a horizontal scroll bar.

Another advantage of floating columns is that it’s easy to achieve a full-width footer

below the columns, regardless of which column is the longest. Using the clear

property, we can make the footer drop below all floated columns.

Absolute positioning can also be used to lay out a page with columns, as it allows

you to specify the exact position of the columns.

So what are the pros and cons of using floats instead of absolute positioning?

Firstly, a complicated float-based layout can be difficult and fragile in Internet

Explorer. IE versions up to and including 6 have numerous float-related bugs.30

Floating an element will only shift it to the left or to the right—you can’t move an

element up or down with the float property. Consequently, a float-based layout

can become very tricky if you want to preserve a certain source order in your markup.

30 See http://positioniseverything.net for well-documented workarounds.

CSS Layout and Form
atting

http://positioniseverything.net

The Ultimate CSS Reference 184

There are ways to do this using a combination of negative margins and relative

positioning,32 but if you use them, you’ll likely run into many nasty IE bugs.

Using absolute positioning incurs fewer browser compatibility problems, although

IE and older versions of Opera (prior to version 9) use the wrong containing block

in some cases. As long as you (and the browser) know your containing blocks, you

can shift parts of the content around without being bound by the source order to

the same extent that you are when working with floats.

Absolute positioning has its own complications, though. The main problem with

this type of layout is that an absolutely positioned element is removed from the

document flow, and doesn’t affect subsequent elements at all. A multi-column,

absolutely positioned layout, in which any column can be the longest, makes it

virtually impossible to display a footer at the bottom of the rendered document.

You can use the following checklist as a rough guide when deciding which type of

layout to use for a multi-column document in which any column can be the longest:

■	 If the source order is important, and it’s different from the presentational order,

and you don’t need a footer on the document, use absolute positioning.

■	 If you need a footer, use floats. Source order can be maintained with the help of

negative margins and relative positioning, if necessary, albeit with a lot of extra

work for IE—especially if the page width is variable.

A third option is to use the table-related values for the display property, but,

unfortunately, lack of support by Internet Explorer hinders the use of those values

for any general-audience site at this time.

The Relationship Between display, position, and
float

The three properties display, float, and position interact in certain ways.

32	 For an example, see the A List Apart article at
http://www.alistapart.com/articles/multicolumnlayouts

http://www.alistapart.com/articles/multicolumnlayouts

185CSS Layout and Formatting

If an element’s display property is set to none, no box is generated. In this case,

float and position are ignored.

If an element’s position property is set to absolute or fixed, it’s absolutely

positioned. In this case, float is ignored (the computed value is none).

For absolutely positioned elements, floated elements (elements whose float property

is set to left or right), and the root element, the computed value for display is

set according to Table 6.3.

Otherwise, the computed value for display is the same as the specified value.

Table 6.3: Computed Display Values

Computed Value Specified Value

blockinline, inline-block, run-in,
table-caption, table-cell,
table-column, table-column-group,
table-footer-group,
table-header-group, table-row, or
table-row-group

tableinline-table,

as specifiedother

Summary
In this section, we covered the way in which elements are described according to

the CSS box model. In the CSS box model, padding and borders are added to the

element’s width, whereas in the IE5 box model, padding and borders reduce the

available content area.

CSS boxes can be block-level or inline. The two types are laid out very differently.

Box layout occurs in formatting contexts, relative to a containing block. The display

property controls which type of box is generated for an element.

CSS Layout and Form
atting

The Ultimate CSS Reference 186

Boxes are laid out in the normal flow if they’re static or relatively positioned. Floated

or absolutely positioned boxes are taken out of the normal flow and laid out

according to special rules.

Table rendering is quite complex, and hampered by a lack of browser support. There

are two table layout algorithms (fixed and automatic) and two border models

(separated and collapsing).

Relatively positioned boxes are shifted from their normal position in the flow. Only

the rendered box is shifted—the element still occupies the original position as far

as the flow is concerned.

Absolutely positioned boxes are removed entirely from the flow. Boxes with fixed

positioning don’t scroll with the document for continuous media; they’re repeated

on every page for paged media.

The z-index property controls the stacking of overlapping positioned boxes.

Floated boxes are shifted to the left or right and non-floated content flows along

their sides. The clear property can be used to force an element to clear all or some

floated boxes within the same block formatting context.

Chapter 7
Box Properties

Box Properties
Box properties allow the author to control the presentation of generated boxes for

document elements, including dimensions, margins, padding, and borders. You

can also see The CSS Box Model (p. 142) for more information.

Dimensions
These properties allow us to control the height and width of element boxes. You

can also read The CSS Box Model (p. 142) for more information about the calculation

of box dimensions.

The Ultimate CSS Reference 188

height

height: { length | percentage | auto | inherit } ;

This property sets the content height of

a block or a replaced element (p. 175).

This height does not include padding,

borders, or margins—see The CSS Box

Model (p. 142).

If the contents of a block require more

vertical space than is afforded by the

height you assign, their behavior is

defined by the overflow (p. 280)

property.

Example

This style rule assigns a fixed height of 100
pixels to paragraphs within the element
with ID "example":

#example p {
 height: 100px;
}

Value

The property takes a CSS length (px, pt, em, etc.), a percentage, or the keyword

auto. Negative length values are illegal.

Percentage values refer to the height of the element’s containing block (p. 147). If the

height of the containing block isn’t specified explicitly (that is, it depends on content

height), and this element isn’t absolutely positioned, the percentage value is treated

as auto. A percentage value is also treated as auto for table cells, table rows, and

row groups.

The special auto value allows the browser to calculate the content height

automatically, based on other factors. For absolutely positioned elements, for

example, the content height may be calculated on the basis of the top (p. 275) and

bottom (p. 277) property values, or the top and bottom margins, borders, and padding

applied to the element. If no hard constraints are imposed by other properties, the

element is allowed to assume its “natural” content height, on the basis of the height

of the content it contains.

SPEC
version initialinherited
CSS1autoNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7+
FULLFULLFULLFULL

189Box Properties

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullBuggyBuggy

Internet Explorer for Windows versions up to and including 5.5 (and up to and

including version 7 in quirks mode) incorrectly include padding, borders, and

margins in the content height calculation. This is known as the box model bug, or

the IE5 box model—see The CSS Box Model (p. 142).

Internet Explorer for Windows versions up to and including 6 (and up to and

including version 7 in quirks mode) incorrectly treat height as min-height,

extending the content height of a block if its content can’t fit within the specified

height. The result is that other elements in the flow will be moved around to account

for this extra height, which can result in a broken layout or, at the least, a different

layout from the one that was expected.

The correct behavior would simply allow the content to overflow without affecting

the height at all, as the default setting for overflow is visible. This would mean

that the overflowing content would be ignored for the purposes of the layout, and

might therefore overlap other elements on the page.

In standards mode, Internet Explorer version 7 treats height correctly and in

accordance with the CSS specifications.

Internet Explorer for Windows versions up to and including 6 don’t support the

specification of both the position and the dimensions of an absolutely positioned

element using top, right, bottom, and left together. They will use the last vertical

and horizontal position specified, and need the dimensions to be specified using

width and height.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Box Properties

The Ultimate CSS Reference 190

min-height

min-height: { length | percentage | inherit } ;

This property sets the minimum content

height of a block or a replaced element

(p. 175). This minimum height doesn’t

include padding, borders, or

margins—see The CSS Box Model

(p. 142).

An element to which min-height is

applied will never be smaller than the

minimum height specified, but will be

allowed to grow normally if the content

exceeds the minimum height set.

Example

This style rule assigns a minimum height
of 100 pixels to paragraphs within the
element with ID "example":

#example p {
min-height: 100px;

}

min-height is usually used to ensure that an element has at least a minimum height

even if no content is present; it’s also commonly used in conjunction with

max-height to produce a height range for the element concerned.

SPEC
version initialinherited
CSS20NO

BROWSER SUPPORT
Op9.2+Saf2+FF1+IE7+
FULLFULLFULLFULL

Combining min-height and height
Note that min-height and height shouldn’t be applied to the same element using
the same unit, as this will cause one to override the other. If, for example, the height
is set as 150px, and the min-height is set as 60px, the actual height of the element
is 150px, and the min-height declaration becomes redundant:

#example {
min-height: 60px;
height: 150px;

}

In the above example, the height of the element will be fixed at 150px. However,
it’s acceptable to set min-height and height when the values are different units:

#example {
min-height: 3em;
height: 138px;

}

Here, the min-height declaration is based on em, which means that at some stage
(due to text resizing) the em height may be larger than the 138px height we’ve set.
In cases such as this, the element will be allowed to expand further than the 138px
height, thus accommodating the resizing of the em-based text.

If the contents of a block require more vertical space than the limits that have been

set, that behavior is defined by the overflow (p. 280) property.

Value

The property takes a CSS length (px, pt, em, etc.) or a percentage. Negative length

values are illegal.

Box Properties
191 Box Properties

Percentage values refer to the height of the containing block. If the height of the

containing block is not specified explicitly (that is, it depends on content height),

and this element is not absolutely positioned, the percentage value is treated as

zero.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullPartial FullFullFullFullNoneNone

Although the support table above indicates that Internet Explorer 6 provides no

support for min-height, note that in quirks mode only it will support min-height

on td, th, and tr elements in fixed-layout tables—see table-layout (p. 292). This

behavior is contrary to the CSS2.1 specifications, and is corrected in standards

mode, which provides no support for this property.

Internet Explorer versions up to and including 6 treat the height property in much

the same way as min-height, and will always expand a container to encompass the

content unless overflow has been set to something other than visible.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

The Ultimate CSS Reference 192

Safari’s support for this property, when applied to positioned elements, is limited

to versions 2.0.2 or above.

max-height

max-height: { length | percentage | none |

inherit } ;

This property sets the maximum content

height of a block or a replaced element

(p. 175). This maximum height does not

include padding, borders, or

margins—see The CSS Box Model

(p. 142).

An element that has max-height

applied will never be taller than the

value specified, even if the height

property is set to something larger. There is an exception to this rule, however: if

min-height is specified with a value that’s greater than that of max-height, the

container’s height will be the largest value, which, in this case, means that the

min-height value will in fact be the one that’s applied.

Example

This style rule assigns a maximum height
of 100 pixels to paragraphs within the
element with ID "example":

#example p {
 max-height: 100px;
}

max-height is usually used in conjunction with min-height to produce a height

range for the element concerned.

SPEC
version initialinherited
CSS2noneNO

BROWSER SUPPORT
Op9.2+Saf2+FF1+IE7+
FULLFULLFULLFULL

Combining max-height and height
Note that max-height and height should not be applied to the same element using
the same unit, as one will override the other. For example, if the height is set to
150px and the max-height set to 60px, the actual height of the element is 60px, and
the height declaration becomes redundant:

#example {
 max-height: 60px;
 height: 150px;
}

In the above example, the height of the element will be fixed at 60px.

However, it is acceptable (although it may not be entirely useful) to set max-height
and height when the values are different units:

#example {
 max-height: 10em;
 height: 138px;
}

The height in the above example will be whichever is the smaller of the values.

Since the max-height declaration is based on em units, at some stage (due to text
resizing) the em height may be smaller than the 138px height we’ve set. In cases
such as these, the element will be allowed to shrink from the 138px height, thus
keeping track with the em-based text. See the entry on min-height (p. 190) for the
reverse of this scenario.

Box Properties
193Box Properties

If the contents of a block require more vertical space than is afforded by the limits

that have been set, their behavior is defined by the overflow (p. 280) property.

Value

The property takes a CSS length (px, pt, em, and so on), a percentage, or the keyword

none. Negative length values are illegal.

Percentage values refer to the height of the containing block. If the height of the

containing block is not specified explicitly (that is, it depends on content height),

and this element is not absolutely positioned, the percentage value is treated as

none.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullPartial FullFullFullFullNoneNone

Safari’s support for this property, when applied to positioned elements, is limited

to versions 2.0.2 or above.

The Ultimate CSS Reference 194

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

width

width: { length | percentage | auto | inherit } ;

This property sets the content width of

a block or a replaced element (p. 175).

This width does not include padding,

borders, or margins—see The CSS Box

Model (p. 142).

If the contents of a block require more

horizontal space than the width you

assign, their behavior is defined by the

overflow (p. 280) property.

Example

This style rule assigns a fixed width of 100
pixels to paragraphs within the element
with ID "example":

#example p {
 width: 100px;
}

Value

The property takes a CSS length (px, pt, em, and so on), a percentage, or the keyword

auto. Negative length values are illegal.

Percentage values refer to the width of the element’s containing block (p. 147). If the

containing block’s width depends on this element’s width, the resulting layout is

undefined in CSS2.1.

The special auto value allows the browser to calculate the content width

automatically on the basis of other factors.

For absolutely positioned elements, for example, the content width may be calculated

on the basis of the left (p. 278) and right (p. 276) property values, or on the left

and right margins, borders, and padding applied to the element. Note that Internet

Explorer versions up to and including 6 don’t correctly apply the properties left

and right when they’re used at the same time. See the section on position for

more details.

SPEC
version initialinherited
CSS1autoNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7+
FULLFULLFULLFULL

195Box Properties

If no hard constraints are imposed by other properties, the element is allowed to

assume its natural content width, based on the width of the horizontal space

available. For static or (relatively positioned) elements, this means that an element

whose width is set to auto will expand to fill the parent without our needing to set

a specific width such as width: 100%. This is useful when padding and borders

need to be set on the same element as it avoids any box model problems—see the

box model (p. 142).

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullBuggyBuggy

Box Properties

Internet Explorer for Windows versions up to and including 5.5 (and up to and

including version 7 in quirks mode) incorrectly include padding, borders, and

margins in the content width. This is known as the box model bug (see the box

model (p. 142)).

Internet Explorer for Windows versions up to and including 6 (and up to and

including version 7 in quirks mode) in some respects incorrectly treat width as

though it were min-width, by extending the content width of a block if its content

cannot fit within the specified space. Such a scenario would arise if an image was

bigger than the available content area, or if unbroken text content couldn’t wrap,

and pushed the boundaries of an element wide enough to fit. This bug may push

other elements on the page out of place, or cause floated elements to drop down.

The correct behavior would let the content overflow without affecting the width of

the element, and would leave other elements unaffected.

However, this stretching of the width will only occur in the types of cases mentioned

above—it won’t be caused by the addition of content that will automatically wrap

within the element, such as normal text. In simple terms, the parent element will

only stretch when the element it holds has a specific width that’s greater than that

of the parent.

Internet Explorer for Windows versions up to and including 6 don’t support the

specification of both the position and the dimensions of an absolutely positioned

The Ultimate CSS Reference 196

element using top, right, bottom, and left together. They will use the last vertical

and horizontal position specified, and need the dimensions to be specified using

width and height.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

min-width

min-width: { length | percentage | inherit } ;

This property sets the minimum content

width of a block or a replaced element

(p. 175). This minimum width does not

include padding, borders, or

margins—see The CSS Box Model

(p. 142).

An element to which min-width is

applied will never be narrower than the

minimum width specified, but it will

be allowed to grow normally if its

content exceeds the minimum width set.

Example

This style rule assigns a minimum width
of 100 pixels to paragraphs within the
element with ID "example":

#example p {
 min-width: 100px;
}

min-width is often used in conjunction with max-width to produce a width range

for the element concerned.

SPEC
version initialinherited
CSS20NO

BROWSER SUPPORT
Op9.2+Saf2+FF1+IE7+
FULLFULLFULLFULL

Combining min-width and width
It should be noted that min-width and width values should not be applied to the
same element if they use the same unit, as one will override the other. For example,
if the width is set to 150px and the min-width is set to 60px, the actual width of the
element is 150px, and the min-width declaration becomes redundant:

#example {
 min-width: 60px;
 width: 150px;
}

In the above example, the width of the element will be fixed at 150px.

However, it’s acceptable to set both min-width and width when their values are
given in different units:

#example {
 min-width: 3em;
 width: 138px;
}

As the min-width is based on em units, at some stage, due to text resizing (for
example), the em width may be larger than the 138px width we’ve set. In cases such
as this, the element will be allowed to expand further than the 138px width, thus
accommodating the resizing of the em-based text.

Box Properties
197Box Properties

If the contents of a block require more horizontal space than is afforded by the limits

that have been set, the behavior is defined by the overflow (p. 280) property.

Value

The property takes a CSS length (px, pt, em, and so on), or a percentage. Negative

length values are illegal.

Percentage values refer to the width of the element’s containing block. If the

containing block’s width is negative, the used value is zero.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullPartial FullFullFullFullNoneNone

Safari’s support for this property, when applied to positioned elements, is limited

to versions 2.0.2 or above.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

The Ultimate CSS Reference 198

max-width

max-width:

{ length | percentage | none | inherit }

;

This property sets the maximum content

width of a block or a replaced element

(p. 175). This maximum width does not

include padding, borders, or

margins—see The CSS Box Model

(p. 142).

An element to which a max-width is

applied will never be wider than the

value specified even if the width

property is set to be wider. There is an

exception to this rule, however: if min-width is specified with a value greater than

that of max-width, the container’s width will be the largest value, which in this case

means that the min-width value will be the one that’s applied.

Example

This style rule assigns a maximum width
of 400 pixels and a minimum width of 100
pixels to paragraphs within the element
with ID "example":

#example p {
 max-width: 400px;
 min-width: 100px;
}

max-width is often used in conjunction with min-width to produce a width range

for the element concerned.

SPEC
version initialinherited
CSS2noneNO

BROWSER SUPPORT
Op9.2+Saf2+FF1+IE7+
FULLFULLFULLFULL

Combining max-width and width
Note that max-width and width shouldn’t be applied to the same element using the
same unit, as one will override the other. If, for example, the width is set to 150px
and the max-width is set to 60px, the actual width of the element will be 60px, and
the width declaration will become redundant.

The following style rule shows how conflicts are resolved where an element has
been given both a width and a max-width using the same unit (pixels in this case):

.example {
 max-width: 60px;
 width: 150px;
}

In the above example, the width of the element will be fixed at 60px.

However, it’s acceptable to set max-width and width when the values are different
units (although it may not be entirely useful, there are a few cases where it can be
used to good effect).

This style rule assigns a max-width of 160px to images with the class "example",
and also assigns a width of 50%:

img.example {
 width: 50%;
 max-width: 160px;
 height: auto;
}

The final width of the image in the above example will be the smallest value.

If you want an image to scale when the page width is small, so that the image doesn’t
break out of its column, you could use the above example to ensure that the image’s
size decreases once the available space is less than 160 pixels.

If the available space is greater than 160 pixels, the image will expand until it’s 160
pixels wide—but no further. This ensures that the image stays at a sensible size—or
its correct aspect ratio—when space allows.

The min-width property can be used for the reverse of this scenario.

Box Properties
199Box Properties

If the contents of a block require more horizontal space than is allowed by the limits

that have been set, the behavior is defined by the overflow (p. 280) property.

Value

The property takes a CSS length (px, pt, em, and so on), a percentage, or the keyword

none. Negative length values are illegal.

Percentage values refer to the width of the containing block (p. 147). If the containing

block’s width is negative, the used value is none.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullPartial FullFullFullFullNoneNone

The Ultimate CSS Reference 200

Safari’s support for this property, when applied to positioned elements, is limited

to versions 2.0.2 or above.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Margins
These properties allow the author to control a box’s margin—the area outside its

border. You can also read The CSS Box Model (p. 142) for more information about

margins.

margin-top

margin-top: { length | percentage | auto |

inherit } ;

This property defines the vertical

distance from the top border edge of an

element to the edge of its containing

block, or the element that’s vertically

adjacent above it. Its effect is also

dependent on other factors, such as the

presence of collapsing margins on

vertically adjacent elements.

If the element above the element in

question is floated, or absolutely positioned, the top margin will pass through the

floated element, because floats and absolute elements are removed from the flow.

The margin will only be affected by static elements (or elements for which position

is set to relative, and which have no coordinates) in the normal flow of the

document—this includes the containing block itself.

Example

This style rule assigns a margin of 20 pixels
to the tops of paragraphs within the
element with ID "example":

#example p {
 margin-top: 20px;
}

Refer to the sections on the CSS box model (p. 142), collapsing margins (p. 148),

containing blocks (p. 147), and floating and clearing (p. 180) to understand exactly

SPEC
version initialinherited
CSS10NO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

how margins work for all elements. The section on inline formatting (p. 166) also

explains how margins affect inline elements.

Value

The property takes a CSS length (px, pt, em, and so on), the keyword auto, or a

percentage of the width of the element’s containing block (p. 147). Note that even

for the top and bottom margins the percentage value will refer to the width of the

containing block. If the containing block’s width depends on the element to which

percentage margins are applied, the resulting layout is undefined in CSS2.1.

Negative values are allowed for margins (although implementation-specific limits

may apply), and have the effect of pulling the element in the direction of the margin

Box Properties
201 Box Properties

specified. This may cause the element to overlap other elements, which may, of

course, be the desired effect. In cases where overlap occurs, we can determine the

elements’ stacking levels by applying z-index values to them. In the case of

non-positioned or floated elements, a z-index only takes effect when a position is

set to relative for the elements, as a z-index can be applied only to positioned

elements.

Negative margins on floats are handled differently and the details are covered in

Floating and Clearing (p. 180).

When you use the value auto, you’re allowing the browser to calculate the margins

for you automatically. In most cases, the calculated value will default either to zero

or to the distance required to reach the parent element’s edge. In the case of a block

element that has a specified width, left and right margins to which a value of auto

is applied will be set to be equal. This will effectively center the element in the

available space.

If margins are over-constrained—that is, the total of their specified dimensions is

greater than the available content space—the browser will reset one of the margins

to auto to overcome the problem.

Vertical margins will have no effect on non-replaced (p. 175) inline elements.

The Ultimate CSS Reference 202

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer version 6 in some instances incorrectly bases vertical margin

percentage values on the width of the body element, rather than the containing

block.

Internet Explorer for Windows versions up to and including 7 differ in their handling

of margin collapse from the CSS2.1 specifications. See Collapsing Margins (p. 148)

for a detailed analysis.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

margin-right

margin-right: { length | percentage | auto |

inherit } ;

This property defines the horizontal

distance from the right border edge of

the element concerned to the edge of its

containing block, or the element that’s

horizontally adjacent to it.

If the element to the side is floated, or

absolutely positioned, the margin will

pass through it, because floats and

absolute elements are removed from the

flow. The margin will only be affected by static elements (or elements for which

position is set to relative, and which have no coordinates) in the normal flow of

the document—this includes the containing block itself.

Example

This style rule assigns a margin of 20 pixels
to the right of paragraphs within the
element with ID "example":

#example p {
 margin-right: 20px;
}

Refer to the sections on the CSS box model (p. 142), collapsing margins (p. 148),

containing blocks (p. 147), and floating and clearing (p. 180) to understand exactly

SPEC
version initialinherited
CSS10NO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

how margins work for all elements. The section on inline formatting (p. 166) also

explains how margins affect inline elements.

Value

The property takes a CSS length (px, pt, em, and so on), the keyword auto, or a

percentage of the width of the element’s containing block (p. 147). Note that even

for the top and bottom margins the percentage value will refer to the width of the

containing block. If the containing block’s width depends on the element to which

percentage margins are applied, the resulting layout is undefined in CSS2.1.

Negative values are allowed for margins (although implementation-specific limits

may apply), and have the effect of pulling the element in the direction of the margin

Box Properties
203Box Properties

specified. This may cause the element to overlap other elements, which may, of

course, be the desired effect. In cases where overlap occurs, we can determine the

elements’ stacking levels by applying z-index values to them. In the case of

non-positioned or floated elements, a z-index only takes effect when a position is

set to relative for the elements, as a z-index can be applied only to positioned

elements.

Negative margins on floats are handled differently and the details are covered in

Floating and Clearing (p. 180).

When you use the value auto, you’re allowing the browser to calculate the margins

for you automatically. In most cases, the calculated value will default either to zero

or to the distance required to reach the parent element’s edge. In the case of a block

element that has a specified width, left and right margins to which a value of auto

is applied will be set to be equal. This will effectively center the element in the

available space.

If margins are over-constrained—that is, the total of their specified dimensions is

greater than the available content space—the browser will reset one of the margins

to auto to overcome the problem.

The Ultimate CSS Reference 204

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer version 5.5 (and version 6 in quirks mode) does not support the

centering of a block element that has a specified width by setting its left and right

margins to auto.

In Internet Explorer versions up to and including 6, the left or right margins are

doubled on floated elements that touch their parents’ side edges. The margin value

is doubled on the side that touches the parent. A simple fix for this problem is to

set display to inline for the floated element.

If the value of the horizontal negative margins are greater or equal to the sum of the

width, padding, and borders of the element, the width of the element effectively

becomes zero. Some older browsers (for example, Mozilla 1.6 and earlier versions)

will appear to ignore the position of the element, much as they would an absolute

element. This causes issues where following elements may not correctly clear the

element in question. However, most modern browsers don’t experience this issue.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

205Box Properties

margin-bottom

margin-bottom: { length | percentage | auto |

inherit } ;

SPEC
version initialinherited
CSS10NO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLBUGGY

Box Properties

This property defines the vertical

distance from the bottom border edge

of the element concerned to the edge of

its containing block, or the element

that’s vertically adjacent underneath.

Its effect is also dependent on other

factors, such as the presence of

collapsing margins on vertically

adjacent elements.

Note that, unlike margin-top, an element’s bottom margin will repel a floated

element that’s beneath it, because floats take their vertical positions from their

current positions in the normal flow.

Example

This style rule assigns a margin of 20 pixels
to the bottom of paragraphs within the
element with ID "example":

#example p {
 margin-bottom: 20px;
}

Refer to the sections on the CSS box model (p. 142), collapsing margins (p. 148),

containing blocks (p. 147), and floating and clearing (p. 180) to understand exactly

how margins work for all elements. The section on inline formatting (p. 166) also

explains how margins affect inline elements.

Value

The property takes a CSS length (px, pt, em, and so on), the keyword auto, or a

percentage of the width of the element’s containing block (p. 147). Note that even

for the top and bottom margins the percentage value will refer to the width of the

containing block. If the containing block’s width depends on the element to which

percentage margins are applied, the resulting layout is undefined in CSS2.1.

Negative values are allowed for margins (although implementation-specific limits

may apply), and have the effect of pulling the element in the direction of the margin

specified. This may cause the element to overlap other elements, which may, of

course, be the desired effect. In cases where overlap occurs, we can determine the

elements’ stacking levels by applying z-index values to them. In the case of

The Ultimate CSS Reference 206

non-positioned or floated elements, a z-index only takes effect when a position is

set to relative for the elements, as a z-index can be applied only to positioned

elements.

Negative margins on floats are handled differently and the details are covered in

Floating and Clearing (p. 180).

When you use the value auto, you’re allowing the browser to calculate the margins

for you automatically. In most cases, the calculated value will default either to zero

or to the distance required to reach the parent element’s edge. In the case of a block

element that has a specified width, left and right margins to which a value of auto

is applied will be set to be equal. This will effectively center the element in the

available space.

If margins are over-constrained—that is, the total of their specified dimensions is

greater than the available content space—the browser will reset one of the margins

to auto to overcome the problem.

Vertical margins will have no effect on non-replaced (p. 175) inline elements.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer version 6 in some instances incorrectly bases vertical margin

percentage values on the width of the body element, rather than the containing

block.

Internet Explorer for Windows versions up to and including 7 differ in their handling

of margin collapse from the CSS2.1 specifications. See Collapsing Margins (p. 148)

for a detailed analysis.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

SPEC
version initialinherited
CSS10NO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLBUGGY

Example

This style rule assigns a margin of 20 pixels
to the left of paragraphs within the element
with ID "example":

#example p {
 margin-left: 20px;
}

Box Properties
207 Box Properties

margin-left

margin-left: { length | percentage | auto |

inherit } ;

This property defines the horizontal

distance from the left border edge of the

element concerned to the edge of its

containing block, or the element that’s

horizontally adjacent to it.

If the element to the side is floated, or

absolutely positioned, the margin will

pass through it, because floats and

absolute elements are removed from the

flow. The margin will only be affected by static elements (or elements for which

position is set to relative, and which have no coordinates) in the normal flow of

the document—this includes the containing block itself.

Refer to the sections on the CSS box model (p. 142), collapsing margins (p. 148),

containing blocks (p. 147), and floating and clearing (p. 180) to understand exactly

how margins work for all elements. The section on inline formatting (p. 166) also

explains how margins affect inline elements.

Value

The property takes a CSS length (px, pt, em, and so on), the keyword auto, or a

percentage of the width of the element’s containing block (p. 147). Note that even

for the top and bottom margins the percentage value will refer to the width of the

containing block. If the containing block’s width depends on the element to which

percentage margins are applied, the resulting layout is undefined in CSS2.1.

Negative values are allowed for margins (although implementation-specific limits

may apply), and have the effect of pulling the element in the direction of the margin

specified. This may cause the element to overlap other elements, which may, of

course, be the desired effect. In cases where overlap occurs, we can determine the

elements’ stacking levels by applying z-index values to them. In the case of

The Ultimate CSS Reference 208

non-positioned or floated elements, a z-index only takes effect when a position is

set to relative for the elements, as a z-index can be applied only to positioned

elements.

Negative margins on floats are handled differently and the details are covered in

Floating and Clearing (p. 180).

When you use the value auto, you’re allowing the browser to calculate the margins

for you automatically. In most cases, the calculated value will default either to zero

or to the distance required to reach the parent element’s edge. In the case of a block

element that has a specified width, left and right margins to which a value of auto

is applied will be set to be equal. This will effectively center the element in the

available space.

If margins are over-constrained—that is, the total of their specified dimensions is

greater than the available content space—the browser will reset one of the margins

to auto to overcome the problem.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer version 5.5 (and version 6 in quirks mode) does not support the

centering of a block element that has a specified width by setting its left and right

margins to auto.

In Internet Explorer versions up to and including 6, the left or right margins are

doubled on floated elements that touch their parents’ side edges. The margin value

is doubled on the side that touches the parent. A simple fix for this problem is to

set display to inline for the floated element.

If the value of the horizontal negative margins are greater or equal to the sum of the

width, padding, and borders of the element, the width of the element effectively

becomes zero. Some older browsers (for example, Mozilla 1.6 and earlier versions)

will appear to ignore the position of the element, much as they would an absolute

209Box Properties

element. This causes issues where following elements may not correctly clear the

element in question. However, most modern browsers don’t experience this issue.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Box Properties margin

margin: { { length | percentage | auto } 1 to 4 values

| inherit } ;

SPEC
version initialinherited
CSS10NO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLBUGGY

In the normal flow of a document,

margins are generally used to control

the horizontal and vertical whitespace

around elements. You can think of a

margin as having the effect of pushing

the element away from other elements

on the page.

Refer to the sections on the CSS box

Example

This style rule assigns a margin of ten
pixels to all four sides of paragraphs within
the element with ID "example":

#example p {
 margin: 10px;
}

model (p. 142), collapsing margins

(p. 148), containing blocks (p. 147), and floating and clearing (p. 180) to understand

exactly how margins work for all elements. The section on inline formatting (p. 166)

also explains how margins affect inline elements.

Also see The CSS Box Model (p. 142) for an overview of how margins are handled

in relation to an element’s borders, padding, and width.

Value

The shorthand property margin allows all four sides of an element’s margins to be

set using either one, two, three or four specified values. Refer to the mnemonic

(TRouBLe) in Shorthand Properties (p. 39) as an easy way to remember the shorthand

order of margins.

The property takes a CSS length (px, pt, em, and so on), the keyword auto, or a

percentage of the width of the element’s containing block (p. 147). Note that even

The Ultimate CSS Reference 210

for the top and bottom margins the percentage value will refer to the width of the

containing block. If the containing block’s width depends on the element to which

percentage margins are applied, the resulting layout is undefined in CSS2.1.

Negative values are allowed for margins (although implementation-specific limits

may apply), and have the effect of pulling the element in the direction of the margin

specified. This may cause the element to overlap other elements, which may, of

course, be the desired effect. In cases where overlap occurs, we can determine the

elements’ stacking levels by applying z-index values to them. In the case of

non-positioned or floated elements, a z-index only takes effect when a position is

set to relative for the elements, as a z-index can be applied only to positioned

elements.

Negative margins on floats are handled differently and the details are covered in

Floating and Clearing (p. 180).

When you use the value auto, you’re allowing the browser to calculate the margins

for you automatically. In most cases, the calculated value will default either to zero

or to the distance required to reach the parent element’s edge. In the case of a block

element that has a specified width, left and right margins to which a value of auto

is applied will be set to be equal. This will effectively center the element in the

available space.

If margins are over-constrained—that is, the total of their specified dimensions is

greater than the available content space—the browser will reset one of the margins

to auto to overcome the problem.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer version 6 in some instances incorrectly bases vertical margin

percentage values on the width of the body element, rather than the containing

block.

211 Box Properties

Internet Explorer version 5.5 (and version 6 in quirks mode) does not support the

centering of a block element that has a specified width by setting its left and right

margins to auto.

In Internet Explorer versions up to and including 6, the left or right margins are

doubled on floated elements that touch their parents’ side edges. The margin value

is doubled on the side that touches the parent. A simple fix for this problem is to

set display to inline for the floated element.

Internet Explorer for Windows versions up to and including 7 differ in their handling

of margin collapse from the CSS2.1 specifications. See Collapsing Margins (p. 148)

for a detailed analysis.

If the value of the horizontal negative margins are greater or equal to the sum of the

width, padding, and borders of the element, the width of the element effectively

becomes zero. Some older browsers (for example, Mozilla 1.6 and earlier versions)

will appear to ignore the position of the element, much as they would an absolute

element. This causes issues where following elements may not correctly clear the

element in question. However, most modern browsers don’t experience this issue.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Padding
These properties allow the author to control a box’s padding—the area between its

content and its border. You can also read The CSS Box Model (p. 142) for more

information about padding.

Box Properties

The Ultimate CSS Reference 212

padding-top

padding-top: { length | percentage | inherit } ;

The property padding-top sets the

padding on the top side of an element

using the value specified.

Padding is the area that’s sandwiched

between an element’s borders and its

content. Any background image or

background color that’s applied to the

element will extend across the padding

area. Refer to The CSS Box Model

Example

This style rule assigns a 2em padding to
the top side of paragraphs within the
element with ID "example":

#example p {
 padding-top: 2em;
}

SPEC
version initialinherited

CSS1, 2.10NO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE6+
FULLFULLFULLFULL

(p. 142) for an in-depth discussion of

how padding is accommodated within the CSS box model.

When vertical padding (padding-top and padding-bottom) is used on an inline,

non-replaced element, it can cause the overlapping of elements above and below

that element in cases where the padding causes the element in question to exceed

the line height. See Inline Formatting (p. 166) for more information.

Value

The property takes a CSS length (px, pt, em, and so on) or a percentage of the width

of the element’s containing block (p. 147). Note that even for top and bottom padding

the percentage value will refer to the width of the containing block. Negative length

values are not allowed.

In CSS2.1, if the containing block’s width depends on an element with percentage

padding, the resulting layout is undefined.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullFullBuggy

Internet Explorer versions up to and including 5.5 (and IE6 and IE7 when in quirks

mode) incorrectly apply padding inside the stated width, thus reducing the space

available for content—see The Internet Explorer 5 Box Model (p. 156).

Internet Explorer up to and including version 6 will often need a

position:relative; declaration added to inline elements in order to show the full

amount of vertical padding.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

SPEC
version initialinherited

CSS1, 2.10NO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE6+
FULLFULLBUGGYFULL

padding-right
padding-right: { length | percentage | inherit } ;

The padding-right property sets the

Box Properties
213 Box Properties

padding to the right side of an element

using the value specified.

Padding is the area that’s sandwiched

between an element’s borders and its

content. Any background image or

background color that’s applied to the

element will extend across the padding

area. Refer to The CSS Box Model

Example

This style rule assigns a 2em padding value
to the right side of paragraphs within the
element with ID "example":

#example p {
 padding-right: 2em;
}

(p. 142) for an in-depth discussion of

how padding is accommodated within the CSS box model.

When horizontal padding (padding-left and padding-right) is used on inline,

non-replaced elements, it has a different effect than it has on block-level elements.

The padding-left value is applied at the start of the inline element, while

padding-right is applied at the end of the inline element. If the element is split

over two or more line boxes, the right padding wraps to the next line with the

element. It doesn’t apply padding to the start and end of each single line, as is the

case with block-level elements. See Inline Formatting (p. 166) for more information.

The Ultimate CSS Reference 214

Value

The property takes a CSS length (px, pt, em, and so on) or a percentage of the width

of the element’s containing block (p. 147). Note that even for top and bottom padding

the percentage value will refer to the width of the containing block. Negative length

values are not allowed.

In CSS2.1, if the containing block’s width depends on an element with percentage

padding, the resulting layout is undefined.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullBuggyBuggyBuggyFullFullBuggy

Internet Explorer versions up to and including 5.5 (and IE6 and IE7 when in quirks

mode) incorrectly apply padding inside the stated width, thus reducing the space

available for content—see The Internet Explorer 5 Box Model (p. 156).

Firefox versions up to and including 2.0.0.7 incorrectly apply padding-right on

inline elements when the element wraps to a new line. The preceding line and the

current line both appear to have padding applied (see Bugzilla2).

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

2 http://bugzilla.mozilla.org/show_bug.cgi?id=122795

http://bugzilla.mozilla.org/show_bug.cgi?id=122795

215 Box Properties
Box Properties

padding-bottom

padding-bottom: { length | percentage | inherit } ;

The padding-bottom property sets the

padding to the bottom side of an

element using the value specified.

Padding is the area that’s sandwiched

between an element’s borders and its

content. Any background image or

background color that’s applied to the

element will extend across the padding

area. Refer to The CSS Box Model

Example

This style rule assigns a 2em padding to
the bottom side of paragraphs within the
element with ID "example":

#example p {
 padding-bottom: 2em;
}

SPEC
version initialinherited

CSS1, 2.10NO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE6+
FULLFULLFULLFULL

(p. 142) for an in-depth discussion of

how padding is accommodated within the CSS box model.

When vertical padding (padding-top and padding-bottom) is used on an inline,

non-replaced element, it can cause the overlapping of elements above and below

that element in cases where the padding causes the element in question to exceed

the line height. See Inline Formatting (p. 166) for more information.

Value

The property takes a CSS length (px, pt, em, and so on) or a percentage of the width

of the element’s containing block (p. 147). Note that even for top and bottom padding

the percentage value will refer to the width of the containing block. Negative length

values are not allowed.

In CSS2.1, if the containing block’s width depends on an element with percentage

padding, the resulting layout is undefined.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullFullBuggy

The Ultimate CSS Reference 216

Internet Explorer versions up to and including 5.5 (and IE6 and IE7 when in quirks

mode) incorrectly apply padding inside the stated width, thus reducing the space

available for content—see The Internet Explorer 5 Box Model (p. 156).

Internet Explorer up to and including version 6 will often need a

position:relative; declaration added to inline elements in order to show the full

amount of vertical padding.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

padding-left

padding-left: { length | percentage | inherit } ;

The property padding-left sets the

padding to the left side of an element

using the value specified.

Padding is the area that’s sandwiched

between an element’s borders and its

content. Any background image or

background color that’s applied to the

element will extend across the padding

area. Refer to The CSS Box Model

Example

This style rule assigns a 2em padding to
the left side of paragraphs within the
element with ID "example":

#example p {
 padding-left: 2em;
}

SPEC
version initialinherited

CSS1, 2.10NO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE6+
FULLFULLFULLFULL

(p. 142) for an in-depth discussion of

how padding is accommodated within the CSS box model.

When horizontal padding (padding-left and padding-right) is used on inline,

non-replaced elements, it has a different effect than it has on block-level elements.

The padding-left value is applied at the start of the inline element, while

padding-right is applied at the end of the inline element. If the element is split

over two or more line boxes, the right padding wraps to the next line with the

element. It doesn’t apply padding to the start and end of each single line, as is the

case with block-level elements. See Inline Formatting (p. 166) for more information.

217 Box Properties

Value

The property takes a CSS length (px, pt, em, and so on) or a percentage of the width

of the element’s containing block (p. 147). Note that even for top and bottom padding

the percentage value will refer to the width of the containing block. Negative length

values are not allowed.

In CSS2.1, if the containing block’s width depends on an element with percentage

padding, the resulting layout is undefined.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullFullBuggy

Box Properties

Internet Explorer versions up to and including 5.5 (and IE6 and IE7 when in quirks

mode) incorrectly apply padding inside the stated width, thus reducing the space

available for content—see The Internet Explorer 5 Box Model (p. 156).

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

The Ultimate CSS Reference 218

padding

padding: { { length | percentage } 1 to 4 values |

inherit } ;

The shorthand property padding sets

the padding for all four sides of an

element using the specified value or

values. Each side can have its own

value; refer to the mnemonic (TRouBLe)

in Shorthand Properties (p. 39) for an

easy way to remember the order in

which each side is specified for the

shorthand property.

Padding is the area that’s sandwiched

between an element’s borders and its

content. Any background image or background color that’s applied to the element

will extend across the padding area. Refer to The CSS Box Model (p. 142) for an

in-depth discussion of how padding is accommodated within the CSS box model.

Example

This style rule assigns a two-pixel padding
value to the top side, a 4px padding value
to the right side, a 6px padding value to
the bottom side, and an 8px padding value
to the left side of paragraphs within the
element with ID "example":

#example p {
 padding: 2px 4px 6px 8px;
}

When vertical padding (padding-top and padding-bottom) is used on an inline,

non-replaced element, it can cause the overlapping of elements above and below

that element in cases where the padding causes the element in question to exceed

the line height. See Inline Formatting (p. 166) for more information.

When horizontal padding (padding-left and padding-right) is used on inline,

non-replaced elements, it has a different effect than it has on block-level elements.

The padding-left value is applied at the start of the inline element, while

padding-right is applied at the end of the inline element. If the element is split

over two or more line boxes, the right padding wraps to the next line with the

element. It doesn’t apply padding to the start and end of each single line, as is the

case with block-level elements. See Inline Formatting (p. 166) for more information.

SPEC
version initialinherited

CSS1, 2.10NO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE6+
FULLFULLFULLFULL

219 Box Properties

Value

The property takes a CSS length (px, pt, em, and so on) or a percentage of the width

of the element’s containing block (p. 147). Note that even for top and bottom padding

the percentage value will refer to the width of the containing block. Negative length

values are not allowed.

Consider the following example:

.outer {

 width: 600px;

 height: 100px;

 background: blue;

}

.outer p {

 width: 300px;

 padding: 10% 0;

 background: red;

 height: 80%

}

<div class="outer">

 <p>this is a test</p>

</div>

You may have expected the total height of the paragraph to add up to 100 pixels

because 80% (height) + 10% (top padding) + 10% (bottom padding) = 100%. However,

the paragraph will actually be 200 pixels high, as the percentage values used for

the vertical padding are based on the 600px width of the parent element, resulting

in values of 60px padding on the top and 60px padding on the bottom. The percentage

value used for height is based on the parent elements height, resulting in a value

of 80px, which results in a total height for the element of 200px (80 + 60 + 60).

In CSS2.1, if the containing block’s width depends on an element with percentage

padding, the resulting layout is undefined.

Compatibility

Box Properties

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullFullBuggy

The Ultimate CSS Reference 220

Internet Explorer versions up to and including 5.5 (and IE6 and IE7 when in quirks

mode) incorrectly apply padding inside the stated width, thus reducing the space

available for content—see The Internet Explorer 5 Box Model (p. 156).

Internet Explorer up to and including version 6 will often need a

position:relative; declaration added to inline elements in order to show the full

amount of vertical padding.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Borders and Outlines
Border properties allow the author to control a box’s border—the area between its

padding and its margins. You can also read The CSS Box Model (p. 142) for more

information about borders.

Outline properties allow the author to control a box’s outline. The outline is usually

drawn outside the border area but doesn’t take up any space like borders do.

border-top-color

border-top-color: { color | transparent | inherit } ;

The property border-top-color sets

the color for the top border of an

element.

Borders are placed on top of the

element’s background.

Example

This style rule assigns a black color to the
top border of paragraphs within the
element with ID "example":

#example p {
 border-top-color: #000;
 border-top-style: solid;
}

SPEC
version initialinherited

CSS1, 2.1see belowNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

Value

This property takes any valid CSS color value or color keyword (p. 33). The initial

value for this property is the value of the color property for the element.

The value transparent allows the border to be transparent, but it will still occupy

the space set by the border-width property and allow the background of the element

to show through the transparent border.

Note that a border will only be visible as long as a border-style has been set. The

default for border-style is none, which means that no border will display, and the

border-width will be reset to zero.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Box Properties
221 Box Properties

Internet Explorer for Windows versions up to and including 6 do not support

transparent borders.

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

The appearance of the borders may vary between user agents (within limits). The

algorithms that define the relationship between the colors used to achieve an effect

(for example, groove, ridge, inset, and outset) are not explicitly defined in the

CSS specifications, so the colors may vary between user agents. In CSS2.1, the

three-dimensional border styles (groove, ridge, inset, and outset) depend on the

corresponding border-color, rather than on color.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

The Ultimate CSS Reference 222

border-top-style

border-top-style: { none | hidden | dotted | dashed

| solid | double | groove | ridge | inset | outset

| inherit } ;

The property border-top-style sets

the style of the top border on an

element. Borders are placed on top of

the element’s background.

Value

none	 none means no border will

show, and the computed

border-width is zero.

Example

This style rule assigns a solid border to the
top edge of paragraphs within the element
with ID "example":

#example p {
 border-top-style: solid;
}

hidden	 hidden has the same meaning as none, except when it refers to table

borders in cases where two cells share a border, and the table cells have

collapsed borders (border-collapse:collapse;). The value hidden

ensures that no border is drawn, since hidden takes precedence over all

other border styles. If none had been used for one border in the cell, the

border would still be drawn, as the adjacent cell’s border would take

precedence. See Table Formatting (p. 168) for more information.

dotted	 dotted implements the border as a series of dots.

dashed	 dashed implements the border as a series of dashes.

solid	 solid implements the border as a solid line.

double	 double implements the border as two solid lines. The sum of the two

border widths and the space between them equals the value that has been

set for border-width.

groove	 groove is a three-dimensional effect that gives the impression that the

border is carved into the canvas.

SPEC
version initialinherited

CSS1, 2.1noneNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

223Box Properties

ridge	 ridge is a 3D effect that has the opposite effect of groove, in that the

border appears to protrude from the canvas.

inset	 inset is a 3D effect that gives the impression that the box is embedded

into the canvas. When it’s used on tables to which the separated borders

model has been applied, the inset value appears to make the whole box

look as though it were embedded into the canvas. When used with the

collapsing border model, it’s treated the same as the value ridge.

outset	 outset is a 3D effect that has the opposite effect of inset in that the border

gives the impression that the box protrudes from the canvas. When it’s

used on tables to which the separated borders model has been applied,

the border makes the whole box look as though it were coming out of the

canvas. When it’s used with the collapsing border model, it behaves the

same way as groove.

Previously, in CSS1, user agents were allowed to interpret all dotted, dashed,

double, groove, ridge, inset, and outset styles as solid.

Compatibility

Box Properties

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

When dotted borders are specified as the border-style, and the border’s width is

only 1px, Internet Explorer for Windows versions up to and including 6 will display

the borders as dashed instead of dotted. At a width of 2px and above, the dotted

borders will display correctly. This glitch was fixed in Internet Explorer Version 7

The Ultimate CSS Reference 224

for cases when all four sides are set to 1px. However, if one of the sides is set to 2px

or more, the 1px dotted borders revert to dashed in IE7.

The appearance of the borders may vary between user agents (within limits). The

algorithms that define the relationship between the colors used to achieve an effect

(for example, groove, ridge, inset, and outset) are not explicitly defined in the

CSS specifications, so the colors may vary between user agents. In CSS2.1, the

three-dimensional border styles (groove, ridge, inset, and outset) depend on the

corresponding border-color, rather than on color.

Internet Explorer for Windows versions up to and including 7:

■ don’t support the value hidden

■ don’t support the value inherit

border-top-width

border-top-width: { thin | medium | thick | length

| inherit } ;

The property border-top-width sets

the width of the border to the top side

of an element using the values specified.

Value

The property takes a CSS length (px, pt,

em, and so on) or one of the allowed

keywords; percentage values are not

allowed.

Example

This style rule assigns a 2px border width
to the top of paragraphs within the element
with ID "example":

#example p {
 border-top-width: 2px;
 border-top-style: solid;
}

Negative length values are illegal.

The keyword width values of thin, medium, and thick aren’t explicitly defined—their

display will depend on the user agent—but have the following meaning: thin <=

medium <= thick.

SPEC
version initialinherited
CSS1mediumNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

225Box Properties

As an example, Internet Explorer versions (up to and including 7) size thin, medium,

and thick borders at 2px, 4px, and 6px respectively, while Firefox 2.0 sizes them

at 1px, 3px, and 5px.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

When dotted borders are specified as the border-style, and the border’s width is

only 1px, Internet Explorer for Windows versions up to and including 6 will display

the borders as dashed instead of dotted. At a width of 2px and above, the dotted

borders will display correctly. This glitch was fixed in Internet Explorer Version 7

for cases when all four sides are set to 1px. However, if one of the sides is set to 2px

or more, the 1px dotted borders revert to dashed in IE7.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Box Properties

The Ultimate CSS Reference 226

border-top

border-top: { [border-width] [border-style]

[border-color] | inherit } ;

SPEC
version initialinherited
CSS1see belowNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

The border-top shorthand property sets

border-top-width and/or

border-top-style and/or

border-top-color to the top side of an

element simultaneously.

Borders are placed on top of the

element’s background.

Value

Example

This style rule assigns a 2px red border to
the top side of paragraphs within the
element with ID "example":

#example p {
 border-top: 2px solid red;
}

Refer to the following individual properties for specific information on allowed and

initial values: border-width (p. 254), border-style (p. 251), and border-color

(p. 249).

Negative length values are illegal.

As with most shorthand properties, you don’t need to specify all the properties

listed, but any omitted properties will revert to their default values. In the case of

border-style, if you omit a value no border will show at all, because the default

value is none. A border will only be visible as long as the border-style property

has been set to something other than none or hidden, or has been restated explicitly

after the initial shorthand declaration. Otherwise, no border will show and the

border-width will be reset to zero. Therefore, it’s good practice to specify a value

for the border’s style when you’re using shorthand notation.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

227Box Properties

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

When dotted borders are specified as the border-style, and the border’s width is

only 1px, Internet Explorer for Windows versions up to and including 6 will display

the borders as dashed instead of dotted. At a width of 2px and above, the dotted

borders will display correctly. This glitch was fixed in Internet Explorer Version 7

for cases when all four sides are set to 1px. However, if one of the sides is set to 2px

or more, the 1px dotted borders revert to dashed in IE7.

Internet Explorer for Windows versions up to and including 6 do not support

transparent borders.

Internet Explorer for Windows versions up to and including 7:

■ don’t support the value hidden

■ don’t support the value inherit

The appearance of the borders may vary between user agents (within limits). The

algorithms that define the relationship between the colors used to achieve an effect

(for example, groove, ridge, inset, and outset) are not explicitly defined in the

CSS specifications, so the colors may vary between user agents. In CSS2.1, the

three-dimensional border styles (groove, ridge, inset, and outset) depend on the

corresponding border-color, rather than on color.

Box Properties

The Ultimate CSS Reference 228

border-right-color

border-right-color: { color | transparent |

inherit } ;

SPEC
version initialinherited

CSS1, 2.1see belowNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

The property border-right-color sets

the color for the right border of an

element.

Borders are placed on top of the

element’s background.

Value

This property takes any valid CSS color

value or color keyword (p. 33). The

initial value for this property is the value of the color property for the element.

Example

This style rule assigns a blue color to the
right border of paragraphs within the
element with ID "example":

#example p {
 border-right-color: blue;
 border-right-style: solid;
}

The value transparent allows the border to be transparent, but it will still occupy

the space set by the border-width property and allow the background of the element

to show through the transparent border.

Note that a border will only be visible as long as a border-style has been set. The

default for border-style is none, which means that no border will display, and the

border-width will be reset to zero.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer for Windows versions up to and including 6 do not support

transparent borders.

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

The appearance of the borders may vary between user agents (within limits). The

algorithms that define the relationship between the colors used to achieve an effect

(for example, groove, ridge, inset, and outset) are not explicitly defined in the

CSS specifications, so the colors may vary between user agents. In CSS2.1, the

three-dimensional border styles (groove, ridge, inset, and outset) depend on the

corresponding border-color, rather than on color.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Box Properties
229Box Properties

border-right-style

border-right-style: { none | hidden | dotted | dashed

| solid | double | groove | ridge | inset | outset

| inherit } ;

SPEC
version initialinherited

CSS1, 2.1noneNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

The property border-right-style sets

the style of an element’s right-hand

border using the values specified.

Borders are placed on top of the

element’s background.

Value

none	 none means no border will

show, and the computed border-width is zero.

Example

This style rule assigns a solid border to the
right-hand edge of paragraphs within the
element with ID "example":

#example p {
 border-right-style: solid;
}

hidden	 hidden has the same meaning as none, except when it refers to table

borders in cases where two cells share a border, and the table cells have

collapsed borders (border-collapse:collapse;). The value hidden

ensures that no border is drawn, since hidden takes precedence over all

other border styles. If none had been used for one border in the cell, the

The Ultimate CSS Reference 230

border would still be drawn, as the adjacent cell’s border would take

precedence. See Table Formatting (p. 168) for more information.

dotted	 dotted implements the border as a series of dots.

dashed	 dashed implements the border as a series of dashes.

solid	 solid implements the border as a solid line.

double	 double implements the border as two solid lines. The sum of the two

border widths and the space between them equals the value that has been

set for border-width.

groove	 groove is a three-dimensional effect that gives the impression that the

border is carved into the canvas.

ridge	 ridge is a 3D effect that has the opposite effect of groove, in that the

border appears to protrude from the canvas.

inset	 inset is a 3D effect that gives the impression that the box is embedded

into the canvas. When it’s used on tables to which the separated borders

model has been applied, the inset value appears to make the whole box

look as though it were embedded into the canvas. When used with the

collapsing border model, it’s treated the same as the value ridge.

outset	 outset is a 3D effect that has the opposite effect of inset in that the border

gives the impression that the box protrudes from the canvas. When it’s

used on tables to which the separated borders model has been applied,

the border makes the whole box look as though it were coming out of the

canvas. When it’s used with the collapsing border model, it behaves the

same way as groove.

Previously, in CSS1, user agents were allowed to interpret all dotted, dashed,

double, groove, ridge, inset, and outset styles as solid.

231 Box Properties

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

When dotted borders are specified as the border-style, and the border’s width is

only 1px, Internet Explorer for Windows versions up to and including 6 will display

the borders as dashed instead of dotted. At a width of 2px and above, the dotted

borders will display correctly. This glitch was fixed in Internet Explorer Version 7

for cases when all four sides are set to 1px. However, if one of the sides is set to 2px

or more, the 1px dotted borders revert to dashed in IE7.

The appearance of the borders may vary between user agents (within limits). The

algorithms that define the relationship between the colors used to achieve an effect

(for example, groove, ridge, inset, and outset) are not explicitly defined in the

CSS specifications, so the colors may vary between user agents. In CSS2.1, the

three-dimensional border styles (groove, ridge, inset, and outset) depend on the

corresponding border-color, rather than on color.

Internet Explorer for Windows versions up to and including 7:

■ don’t support the value hidden

■ don’t support the value inherit

Box Properties

The Ultimate CSS Reference 232

border-right-width

border-right-width: { thin | medium | thick | length

| inherit } ;

The property border-right-width sets

the width of the border on the

right-hand side of an element using the

values specified.

Value

The property takes a CSS length (px, pt,

em, and so on) or one of the allowed

keywords; percentage values are not

allowed.

Example

This style rule assigns a 2px border width
to the right of paragraphs within the
element with ID "example":

#example p {
 border-right-width: 2px;
 border-right-style: solid;
}

Negative length values are illegal.

The keyword width values of thin, medium, and thick aren’t explicitly defined—their

display will depend on the user agent—but have the following meaning: thin <=

medium <= thick.

As an example, Internet Explorer versions (up to and including 7) size thin, medium,

and thick borders at 2px, 4px, and 6px respectively, while Firefox 2.0 sizes them

at 1px, 3px, and 5px.

Compatibility

SPEC
version initialinherited
CSS1mediumNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

233Box Properties

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

When dotted borders are specified as the border-style, and the border’s width is

only 1px, Internet Explorer for Windows versions up to and including 6 will display

the borders as dashed instead of dotted. At a width of 2px and above, the dotted

borders will display correctly. This glitch was fixed in Internet Explorer Version 7

for cases when all four sides are set to 1px. However, if one of the sides is set to 2px

or more, the 1px dotted borders revert to dashed in IE7.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Box Properties

border-right

border-right: { [border-width] [border-style]

[border-color] | inherit } ;

SPEC
version initialinherited
CSS1see belowNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLBUGGY

The border-right shorthand property

sets the border-right-width and/or

border-right-style and/or

border-right-color to the right side

of an element simultaneously.

Borders are placed on top of the

element’s background.

Value

Example

This style rule assigns a 2px red border to
the right-hand side of paragraphs within
the element with ID "example":

#example p {
 border-right: 2px solid red;
}

Refer to the following individual properties for specific information on allowed and

initial values: border-width (p. 254), border-style (p. 251), and border-color

(p. 249).

Negative length values are illegal.

As with most shorthand properties, you don’t need to specify all the properties

listed, but any omitted properties will revert to their default values. In the case of

The Ultimate CSS Reference 234

border-style, if you omit a value no border will show at all, because the default

value is none. A border will only be visible as long as the border-style property

has been set to something other than none or hidden, or has been restated explicitly

after the initial shorthand declaration. Otherwise, no border will show and the

border-width will be reset to zero. Therefore, it’s good practice to specify a value

for the border’s style when you’re using shorthand notation.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

When dotted borders are specified as the border-style, and the border’s width is

only 1px, Internet Explorer for Windows versions up to and including 6 will display

the borders as dashed instead of dotted. At a width of 2px and above, the dotted

borders will display correctly. This glitch was fixed in Internet Explorer Version 7

for cases when all four sides are set to 1px. However, if one of the sides is set to 2px

or more, the 1px dotted borders revert to dashed in IE7.

Internet Explorer for Windows versions up to and including 6 do not support

transparent borders.

Internet Explorer for Windows versions up to and including 7:

■ don’t support the value hidden

■ don’t support the value inherit

The appearance of the borders may vary between user agents (within limits). The

algorithms that define the relationship between the colors used to achieve an effect

(for example, groove, ridge, inset, and outset) are not explicitly defined in the

235Box Properties

CSS specifications, so the colors may vary between user agents. In CSS2.1, the

three-dimensional border styles (groove, ridge, inset, and outset) depend on the

corresponding border-color, rather than on color.

Box Properties

border-bottom-color

border-bottom-color: { color | transparent |

inherit } ;

The property border-bottom-color sets

the color for the bottom border of an

element.

Borders are placed on top of the

element’s background.

Value

This property takes any valid CSS color

value or color keyword (p. 33). The

initial value for this property is the value of the color property for the element.

Example

This style rule assigns a black color to the
bottom border of paragraphs within the
element with ID "example":

#example p {
 border-bottom-color: #000;
 border-bottom-style: solid;
}

The value transparent allows the border to be transparent, but it will still occupy

the space set by the border-width property and allow the background of the element

to show through the transparent border.

Note that a border will only be visible as long as a border-style has been set. The

default for border-style is none, which means that no border will display, and the

border-width will be reset to zero.

Compatibility

SPEC
version initialinherited

CSS1, 2.1see belowNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer for Windows versions up to and including 6 do not support

transparent borders.

The Ultimate CSS Reference 236

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

The appearance of the borders may vary between user agents (within limits). The

algorithms that define the relationship between the colors used to achieve an effect

(for example, groove, ridge, inset, and outset) are not explicitly defined in the

CSS specifications, so the colors may vary between user agents. In CSS2.1, the

three-dimensional border styles (groove, ridge, inset, and outset) depend on the

corresponding border-color, rather than on color.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

border-bottom-style

border-bottom-style: { none | hidden | dotted |

dashed | solid | double | groove | ridge | inset |

outset | inherit } ;

SPEC
version initialinherited

CSS1, 2.1noneNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

The property border-bottom-style sets

the style of the bottom border on an

element. Borders are placed on top of

the element’s background.

Value

none	 none means no border will

show, and the computed

Example

This style rule assigns a solid border to the
bottom edge of paragraphs within the
element with ID "example":

#example p {
 border-bottom-style: solid;
}

border-width is zero.

hidden hidden has the same meaning as none, except when it refers to table

borders in cases where two cells share a border, and the table cells have

237Box Properties

collapsed borders (border-collapse:collapse;). The value hidden

ensures that no border is drawn, since hidden takes precedence over all

other border styles. If none had been used for one border in the cell, the

border would still be drawn, as the adjacent cell’s border would take

precedence. See Table Formatting (p. 168) for more information.

dotted	 dotted implements the border as a series of dots.

dashed	 dashed implements the border as a series of dashes.

solid	 solid implements the border as a solid line.

double	 double implements the border as two solid lines. The sum of the two

border widths and the space between them equals the value that has been

set for border-width.

groove	 groove is a three-dimensional effect that gives the impression that the

border is carved into the canvas.

ridge	 ridge is a 3D effect that has the opposite effect of groove, in that the

border appears to protrude from the canvas.

inset	 inset is a 3D effect that gives the impression that the box is embedded

into the canvas. When it’s used on tables to which the separated borders

model has been applied, the inset value appears to make the whole box

look as though it were embedded into the canvas. When used with the

collapsing border model, it’s treated the same as the value ridge.

outset	 outset is a 3D effect that has the opposite effect of inset in that the border

gives the impression that the box protrudes from the canvas. When it’s

used on tables to which the separated borders model has been applied,

the border makes the whole box look as though it were coming out of the

canvas. When it’s used with the collapsing border model, it behaves the

same way as groove.

Box Properties

The Ultimate CSS Reference 238

Previously, in CSS1, user agents were allowed to interpret all dotted, dashed,

double, groove, ridge, inset, and outset styles as solid.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

When dotted borders are specified as the border-style, and the border’s width is

only 1px, Internet Explorer for Windows versions up to and including 6 will display

the borders as dashed instead of dotted. At a width of 2px and above, the dotted

borders will display correctly. This glitch was fixed in Internet Explorer Version 7

for cases when all four sides are set to 1px. However, if one of the sides is set to 2px

or more, the 1px dotted borders revert to dashed in IE7.

The appearance of the borders may vary between user agents (within limits). The

algorithms that define the relationship between the colors used to achieve an effect

(for example, groove, ridge, inset, and outset) are not explicitly defined in the

CSS specifications, so the colors may vary between user agents. In CSS2.1, the

three-dimensional border styles (groove, ridge, inset, and outset) depend on the

corresponding border-color, rather than on color.

Internet Explorer for Windows versions up to and including 7:

■ don’t support the value hidden

■ don’t support the value inherit

239Box Properties

border-bottom-width

border-bottom-width: { thin | medium | thick | length

| inherit } ;

The property border-bottom-width sets

the width of the border to the bottom

side of an element using the values

specified.

Value

The property takes a CSS length (px, pt,

em, and so on) or one of the allowed

keywords; percentage values are not

allowed.

Example

This style rule assigns a 2px border width
to the bottom of paragraphs within the
element with ID "example":

#example p {
 border-bottom-width: 2px;
 border-bottom-style: solid;
}

Negative length values are illegal.

The keyword width values of thin, medium, and thick aren’t explicitly defined—their

display will depend on the user agent—but have the following meaning: thin <=

medium <= thick.

As an example, Internet Explorer versions (up to and including 7) size thin, medium,

and thick borders at 2px, 4px, and 6px respectively, while Firefox 2.0 sizes them

at 1px, 3px, and 5px.

Compatibility

SPEC
version initialinherited
CSS1mediumNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLBUGGY

Box Properties

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

The Ultimate CSS Reference 240

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

When dotted borders are specified as the border-style, and the border’s width is

only 1px, Internet Explorer for Windows versions up to and including 6 will display

the borders as dashed instead of dotted. At a width of 2px and above, the dotted

borders will display correctly. This glitch was fixed in Internet Explorer Version 7

for cases when all four sides are set to 1px. However, if one of the sides is set to 2px

or more, the 1px dotted borders revert to dashed in IE7.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

border-bottom

border-bottom: { [border-width] [border-style]

[border-color] | inherit } ;

SPEC
version initialinherited
CSS1see belowNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

The border-bottom shorthand property

sets border-bottom-width and/or

border-bottom-style and/or

border-bottom-color to the bottom

side of an element simultaneously.

Borders are placed on top of the

element’s background.

Value

Example

This style rule assigns a 2px blue border
to the bottom side of paragraphs within the
element with ID "example":

#example p {
 border-bottom: 2px solid blue;
}

Refer to the following individual properties for specific information on allowed and

initial values: border-width (p. 254), border-style (p. 251), and border-color

(p. 249).

Negative length values are illegal.

As with most shorthand properties, you don’t need to specify all the properties

listed, but any omitted properties will revert to their default values. In the case of

241 Box Properties

border-style, if you omit a value no border will show at all, because the default

value is none. A border will only be visible as long as the border-style property

has been set to something other than none or hidden, or has been restated explicitly

after the initial shorthand declaration. Otherwise, no border will show and the

border-width will be reset to zero. Therefore, it’s good practice to specify a value

for the border’s style when you’re using shorthand notation.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

When dotted borders are specified as the border-style, and the border’s width is

only 1px, Internet Explorer for Windows versions up to and including 6 will display

the borders as dashed instead of dotted. At a width of 2px and above, the dotted

borders will display correctly. This glitch was fixed in Internet Explorer Version 7

for cases when all four sides are set to 1px. However, if one of the sides is set to 2px

or more, the 1px dotted borders revert to dashed in IE7.

Internet Explorer for Windows versions up to and including 6 do not support

transparent borders.

Internet Explorer for Windows versions up to and including 7:

■ don’t support the value hidden

■ don’t support the value inherit

The appearance of the borders may vary between user agents (within limits). The

algorithms that define the relationship between the colors used to achieve an effect

(for example, groove, ridge, inset, and outset) are not explicitly defined in the

Box Properties

The Ultimate CSS Reference 242

CSS specifications, so the colors may vary between user agents. In CSS2.1, the

three-dimensional border styles (groove, ridge, inset, and outset) depend on the

corresponding border-color, rather than on color.

border-left-color

border-left-color: { color | transparent |

inherit } ;

The property border-left-color sets

the color for the left border of an

element.

Borders are placed on top of the

element’s background.

Value

This property takes any valid CSS color

value or color keyword (p. 33). The

initial value for this property is the value of the color property for the element.

Example

This style rule assigns a green color to the
left-hand border of paragraphs within the
element with ID "example":

#example p {
 border-left-color: green;
 border-left-style: solid;
}

The value transparent allows the border to be transparent, but it will still occupy

the space set by the border-width property and allow the background of the element

to show through the transparent border.

Note that a border will only be visible as long as a border-style has been set. The

default for border-style is none, which means that no border will display, and the

border-width will be reset to zero.

Compatibility

SPEC
version initialinherited

CSS1, 2.1see belowNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer for Windows versions up to and including 6 do not support

transparent borders.

243Box Properties

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

The appearance of the borders may vary between user agents (within limits). The

algorithms that define the relationship between the colors used to achieve an effect

(for example, groove, ridge, inset, and outset) are not explicitly defined in the

CSS specifications, so the colors may vary between user agents. In CSS2.1, the

three-dimensional border styles (groove, ridge, inset, and outset) depend on the

corresponding border-color, rather than on color.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Box Properties

border-left-style

border-left-style: { none | hidden | dotted | dashed

| solid | double | groove | ridge | inset | outset

| inherit } ;

SPEC
version initialinherited

CSS1, 2.1noneNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

The property border-left-style sets

the style of the left-hand border on an

element using the values specified.

Borders are placed on top of the

element’s background.

Value

none	 none means no border will

show, and the computed border-width is zero.

Example

This style rule assigns a solid border to the
left-hand edge of paragraphs within the
element with ID "example":

#example p {
 border-left-style: solid;
}

hidden	 hidden has the same meaning as none, except when it refers to table

borders in cases where two cells share a border, and the table cells have

The Ultimate CSS Reference 244

collapsed borders (border-collapse:collapse;). The value hidden

ensures that no border is drawn, since hidden takes precedence over all

other border styles. If none had been used for one border in the cell, the

border would still be drawn, as the adjacent cell’s border would take

precedence. See Table Formatting (p. 168) for more information.

dotted	 dotted implements the border as a series of dots.

dashed	 dashed implements the border as a series of dashes.

solid	 solid implements the border as a solid line.

double	 double implements the border as two solid lines. The sum of the two

border widths and the space between them equals the value that has been

set for border-width.

groove	 groove is a three-dimensional effect that gives the impression that the

border is carved into the canvas.

ridge	 ridge is a 3D effect that has the opposite effect of groove, in that the

border appears to protrude from the canvas.

inset	 inset is a 3D effect that gives the impression that the box is embedded

into the canvas. When it’s used on tables to which the separated borders

model has been applied, the inset value appears to make the whole box

look as though it were embedded into the canvas. When used with the

collapsing border model, it’s treated the same as the value ridge.

outset	 outset is a 3D effect that has the opposite effect of inset in that the border

gives the impression that the box protrudes from the canvas. When it’s

used on tables to which the separated borders model has been applied,

the border makes the whole box look as though it were coming out of the

canvas. When it’s used with the collapsing border model, it behaves the

same way as groove.

245Box Properties

Previously, in CSS1, user agents were allowed to interpret all dotted, dashed,

double, groove, ridge, inset, and outset styles as solid.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

When dotted borders are specified as the border-style, and the border’s width is

only 1px, Internet Explorer for Windows versions up to and including 6 will display

the borders as dashed instead of dotted. At a width of 2px and above, the dotted

borders will display correctly. This glitch was fixed in Internet Explorer Version 7

for cases when all four sides are set to 1px. However, if one of the sides is set to 2px

or more, the 1px dotted borders revert to dashed in IE7.

The appearance of the borders may vary between user agents (within limits). The

algorithms that define the relationship between the colors used to achieve an effect

(for example, groove, ridge, inset, and outset) are not explicitly defined in the

CSS specifications, so the colors may vary between user agents. In CSS2.1, the

three-dimensional border styles (groove, ridge, inset, and outset) depend on the

corresponding border-color, rather than on color.

Internet Explorer for Windows versions up to and including 7:

■ don’t support the value hidden

■ don’t support the value inherit

Box Properties

The Ultimate CSS Reference 246

border-left-width

border-left-width: { thin | medium | thick | length

| inherit } ;

The property border-left-width sets

the width of the border on the left-hand

side of an element using the values

specified.

Value

The property takes a CSS length (px, pt,

em, and so on) or one of the allowed

keywords; percentage values are not

allowed.

Example

This style rule assigns a 2px border width
to the left of paragraphs within the element
with ID "example":

#example p {
 border-left-width: 2px;
 border-left-style: solid;
}

Negative length values are illegal.

The keyword width values of thin, medium, and thick aren’t explicitly defined—their

display will depend on the user agent—but have the following meaning: thin <=

medium <= thick.

As an example, Internet Explorer versions (up to and including 7) size thin, medium,

and thick borders at 2px, 4px, and 6px respectively, while Firefox 2.0 sizes them

at 1px, 3px, and 5px.

Compatibility

SPEC
version initialinherited
CSS1mediumNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

247Box Properties

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

When dotted borders are specified as the border-style, and the border’s width is

only 1px, Internet Explorer for Windows versions up to and including 6 will display

the borders as dashed instead of dotted. At a width of 2px and above, the dotted

borders will display correctly. This glitch was fixed in Internet Explorer Version 7

for cases when all four sides are set to 1px. However, if one of the sides is set to 2px

or more, the 1px dotted borders revert to dashed in IE7.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Box Properties

border-left

border-left: { [border-width] [border-style]

[border-color] | inherit } ;

SPEC
version initialinherited
CSS1see belowNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLBUGGY

The border-left shorthand property

sets border-left-width and/or

border-left-style and/or

border-left-color to the left side of

an element simultaneously.

Borders are placed on top of the

element’s background.

Value

Example

This style rule assigns a 2px green border
to the left-hand side of paragraphs within
the element with ID "example":

#example p {
 border-left: 2px solid green;
}

Refer to the following individual properties for specific information on allowed and

initial values: border-width (p. 254), border-style (p. 251), and border-color

(p. 249).

Negative length values are illegal.

As with most shorthand properties, you don’t need to specify all the properties

listed, but any omitted properties will revert to their default values. In the case of

The Ultimate CSS Reference 248

border-style, if you omit a value no border will show at all, because the default

value is none. A border will only be visible as long as the border-style property

has been set to something other than none or hidden, or has been restated explicitly

after the initial shorthand declaration. Otherwise, no border will show and the

border-width will be reset to zero. Therefore, it’s good practice to specify a value

for the border’s style when you’re using shorthand notation.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

When dotted borders are specified as the border-style, and the border’s width is

only 1px, Internet Explorer for Windows versions up to and including 6 will display

the borders as dashed instead of dotted. At a width of 2px and above, the dotted

borders will display correctly. This glitch was fixed in Internet Explorer Version 7

for cases when all four sides are set to 1px. However, if one of the sides is set to 2px

or more, the 1px dotted borders revert to dashed in IE7.

Internet Explorer for Windows versions up to and including 6 do not support

transparent borders.

Internet Explorer for Windows versions up to and including 7:

■ don’t support the value hidden

■ don’t support the value inherit

The appearance of the borders may vary between user agents (within limits). The

algorithms that define the relationship between the colors used to achieve an effect

(for example, groove, ridge, inset, and outset) are not explicitly defined in the

249Box Properties

CSS specifications, so the colors may vary between user agents. In CSS2.1, the

three-dimensional border styles (groove, ridge, inset, and outset) depend on the

corresponding border-color, rather than on color.

Box Properties

border-color

border-color: { { color | transparent } 1 to 4 values

| inherit } ;

The shorthand property border-color

sets the border color on all four sides of

an element using from one to four of the

values specified. Each border can have

its own value—refer to the mnemonic

(TRouBLe) in Shorthand Properties

(p. 39) for an easy way to remember the

shorthand order.

Borders are placed on top of the

element’s background.

If no color value is specified for

border-color, the border will use the color value of the element.

Example

This style rule assigns a red border to the
top, a green border to the bottom, and blue
borders to the left- and right-hand sides of
paragraphs within the element with ID
"example":

#example p {
 border-color: red blue green;
 border-style: solid;
}

Value

This property takes any valid CSS color value or color keyword (p. 33). The initial

value for this property is the value of the color property for the element.

The value transparent allows the border to be transparent, but it will still occupy

the space set by the border-width property and allow the background of the element

to show through the transparent border.

Note that a border will only be visible as long as a border-style has been set. The

default for border-style is none, which means that no border will display, and the

border-width will be reset to zero.

SPEC
version initialinherited

CSS1, 2.1see belowNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

The Ultimate CSS Reference 250

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer for Windows versions up to and including 6 do not support

transparent borders.

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

The appearance of the borders may vary between user agents (within limits). The

algorithms that define the relationship between the colors used to achieve an effect

(for example, groove, ridge, inset, and outset) are not explicitly defined in the

CSS specifications, so the colors may vary between user agents. In CSS2.1, the

three-dimensional border styles (groove, ridge, inset, and outset) depend on the

corresponding border-color, rather than on color.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

251 Box Properties

border-style

border-style: { { none | hidden | dotted | dashed |

solid | double | groove | ridge | inset | outset } 1

to 4 values | inherit } ;

The shorthand property border-style

sets the style of the border on all four

sides of an element using the values

specified. Each border can have its own

value—refer to the mnemonic

(TRouBLe) in Shorthand Properties

(p. 39) for an easy way to remember the

shorthand order.

Borders are placed on top of the

element’s background.

Example

This style rule assigns a solid border to the
top, a dashed border to the bottom, and a
dotted border to the left- and right-hand
sides of paragraphs within the element
with ID "example":

#example p {
 border-style: solid dotted
dashed;
}

Value

none	 none means no border will show, and the computed border-width is

zero.

hidden	 hidden has the same meaning as none, except when it refers to table

borders in cases where two cells share a border, and the table cells have

collapsed borders (border-collapse:collapse;). The value hidden

ensures that no border is drawn, since hidden takes precedence over all

other border styles. If none had been used for one border in the cell, the

border would still be drawn, as the adjacent cell’s border would take

precedence. See Table Formatting (p. 168) for more information.

dotted	 dotted implements the border as a series of dots.

dashed	 dashed implements the border as a series of dashes.

solid	 solid implements the border as a solid line.

SPEC
version initialinherited

CSS1, 2.1noneNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

Box Properties

The Ultimate CSS Reference 252

double	 double implements the border as two solid lines. The sum of the two

border widths and the space between them equals the value that has been

set for border-width.

groove	 groove is a three-dimensional effect that gives the impression that the

border is carved into the canvas.

ridge	 ridge is a 3D effect that has the opposite effect of groove, in that the

border appears to protrude from the canvas.

inset	 inset is a 3D effect that gives the impression that the box is embedded

into the canvas. When it’s used on tables to which the separated borders

model has been applied, the inset value appears to make the whole box

look as though it were embedded into the canvas. When used with the

collapsing border model, it’s treated the same as the value ridge.

outset	 outset is a 3D effect that has the opposite effect of inset in that the border

gives the impression that the box protrudes from the canvas. When it’s

used on tables to which the separated borders model has been applied,

the border makes the whole box look as though it were coming out of the

canvas. When it’s used with the collapsing border model, it behaves the

same way as groove.

Previously, in CSS1, user agents were allowed to interpret all dotted, dashed,

double, groove, ridge, inset, and outset styles as solid.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

253Box Properties

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

When dotted borders are specified as the border-style, and the border’s width is

only 1px, Internet Explorer for Windows versions up to and including 6 will display

the borders as dashed instead of dotted. At a width of 2px and above, the dotted

borders will display correctly. This glitch was fixed in Internet Explorer Version 7

for cases when all four sides are set to 1px. However, if one of the sides is set to 2px

or more, the 1px dotted borders revert to dashed in IE7.

The appearance of the borders may vary between user agents (within limits). The

algorithms that define the relationship between the colors used to achieve an effect

(for example, groove, ridge, inset, and outset) are not explicitly defined in the

CSS specifications, so the colors may vary between user agents. In CSS2.1, the

three-dimensional border styles (groove, ridge, inset, and outset) depend on the

corresponding border-color, rather than on color.

Internet Explorer for Windows versions up to and including 7:

■ don’t support the value hidden

■ don’t support the value inherit

Box Properties

The Ultimate CSS Reference 254

border-width

border-width: { { thin | medium | thick | length } 1

to 4 values | inherit } ;

The shorthand property border-width

sets the width of the border on all four

sides of an element using the values

specified. Each border can have its own

value.

The shorthand border-width allows all

four sides of an element’s borders to be

set using either one, two, three, or four

specified values. Refer to the mnemonic

(TRouBLe) in Shorthand Properties

Example

This style rule assigns a 2px border to the
top and bottom sides, and a four-pixel
border to the left- and right-hand sides, of
paragraphs within the element with ID
"example":

#example p {
 border-width: 2px 4px;
 border-style: solid;
}

(p. 39) for an easy way to remember the

shorthand order.

Value

The property takes a CSS length (px, pt, em, and so on) or one of the allowed

keywords; percentage values are not allowed.

Negative length values are illegal.

Note that a border will only be visible as long as a border-style has been set. The

default for border-style is none, which means that no border will display, and the

border-width will be reset to zero.

The keyword width values of thin, medium, and thick aren’t explicitly defined—their

display will depend on the user agent—but have the following meaning: thin <=

medium <= thick.

As an example, Internet Explorer versions (up to and including 7) size thin, medium,

and thick borders at 2px, 4px, and 6px respectively, while Firefox 2.0 sizes them

at 1px, 3px, and 5px.

SPEC
version initialinherited
CSS1mediumNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

255Box Properties

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

When dotted borders are specified as the border-style, and the border’s width is

only 1px, Internet Explorer for Windows versions up to and including 6 will display

the borders as dashed instead of dotted. At a width of 2px and above, the dotted

borders will display correctly. This glitch was fixed in Internet Explorer Version 7

for cases when all four sides are set to 1px. However, if one of the sides is set to 2px

or more, the 1px dotted borders revert to dashed in IE7.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Box Properties

border

border: { [border-width] [border-style]

[border-color] | inherit } ;

The shorthand property border sets the

border-width, border-style, and

border-color for all four sides of an

element using the values specified.

Unlike the shorthand margin property,

you cannot set each border to a different

width (or have different colors and

styles for each border) using just the

shorthand border property. To specify

SPEC
version initialinherited
CSS1see belowNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLBUGGY

Example

This style rule assigns a 2px red border to
all four sides of paragraphs within the
element with ID "example":

#example p {
 border: 2px solid red;
}

The Ultimate CSS Reference 256

different values for each side, you’ll need to refer to the property values for the

shorthand styles border-width, border-style, and border-color.

It’s also possible to be more specific, and apply an individual border-style,

border-color, or border-width to a particular side. For example, to target the top

border of an element you’d use the properties border-top-width, border-top-color,

and border-top-style. (You can target other sides of the element in the same way,

substituting “top” in the above property for “left,” “right,” or “bottom” as required.)

Borders are placed on top of the element’s background.

Value

Refer to the following individual properties for specific information on allowed and

initial values: border-width (p. 254), border-style (p. 251), and border-color

(p. 249).

Negative length values are illegal.

As with most shorthand properties, you don’t need to specify all the properties

listed, but any omitted properties will revert to their default values. In the case of

border-style, if you omit a value no border will show at all, because the default

value is none. A border will only be visible as long as the border-style property

has been set to something other than none or hidden, or has been restated explicitly

after the initial shorthand declaration. Otherwise, no border will show and the

border-width will be reset to zero. Therefore, it’s good practice to specify a value

for the border’s style when you’re using shorthand notation.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

User agents are supposed to place borders on the element’s background, but in

Internet Explorer for Windows versions up to and including 7, the background only

reaches the inside edge of the border when the element has a layout (p. 158). This

means that for dotted or dashed borders, the background won’t be visible through

257Box Properties

the spaces within the border. When the element doesn’t have a layout, the

background will extend under the borders.

When dotted borders are specified as the border-style, and the border’s width is

only 1px, Internet Explorer for Windows versions up to and including 6 will display

the borders as dashed instead of dotted. At a width of 2px and above, the dotted

borders will display correctly. This glitch was fixed in Internet Explorer Version 7

for cases when all four sides are set to 1px. However, if one of the sides is set to 2px

or more, the 1px dotted borders revert to dashed in IE7.

Internet Explorer for Windows versions up to and including 6 do not support

transparent borders.

Internet Explorer for Windows versions up to and including 7:

■ don’t support the value hidden

■ don’t support the value inherit

The appearance of the borders may vary between user agents (within limits). The

algorithms that define the relationship between the colors used to achieve an effect

(for example, groove, ridge, inset, and outset) are not explicitly defined in the

CSS specifications, so the colors may vary between user agents. In CSS2.1, the

three-dimensional border styles (groove, ridge, inset, and outset) depend on the

corresponding border-color, rather than on color.

Box Properties

The Ultimate CSS Reference 258

outline-color

outline-color: { color | invert | inherit } ;

The outline-style property sets the

style of the outline that’s drawn around

an element. See outline (p. 261) for more

information about outlines.

Note that an outline will only show

when outline-style has been set with

a value other than none.

Value

outline-color accepts any valid CSS

color value, as well as the keyword invert. invert does as its name suggests: it

performs a pixel-color inversion of the outline in order that the outline remains

visible regardless of any background colors that have been set. As of CSS2.1, user

agents have been allowed to ignore the invert value, and instead use the element’s

color property.

Example

This style rule assigns a red outline color
on focus to anchor elements within the
element with ID "example":

#example a:focus {
 outline-color: red;
 outline-style: solid;
}

Compatibility

SPEC
version initialinherited

CSS2,2.1invertNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1.5+IE7
FULLFULLFULLNONE

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullNoneNoneNoneNone

Internet Explorer for Windows (up to and including version 7) and Firefox 1.0

provide no support for outline.

259Box Properties

outline-style

outline-style: { none | dotted | dashed | solid |

double | groove | ridge | inset | outset |

inherit } ;

The outline-style property sets the

style of the outline that’s drawn around

an element. See outline (p. 261) for more

information about outlines.

Note that an outline will only show

when outline-style has been set with

a value other than none.

Value

Example

This style rule assigns a solid outline
(with the default width and color) on focus
to anchor elements within the element with
ID "example":

#example a:focus {
 outline-style: solid;
}

The property takes the same values as border-style (p. 251) with the exception

of hidden, which is not allowed:

none	 means no outline will show

dotted	 implements the outline as a series of dots

dashed	 implements the outline as a series of dashes

solid	 implements the outline as a solid line

double	 implements the outline as two solid lines (the sum of the two outline

widths and the space between them equals the value that has been set for

outline-width)

groove	 a 3D effect that gives the impression that the outline is carved into the

canvas

ridge	 a 3D effect that has the opposite effect of groove in that the outline appears

to protrude from the canvas

SPEC
version initialinherited

CSS2, 2.1noneNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1.5+IE7
FULLFULLFULLNONE

Box Properties

The Ultimate CSS Reference 260

inset a 3D effect that gives the impression that the outline is embedded into

the canvas

outset a 3D effect that has the opposite effect of inset in that the outline gives

the impression of protruding from the canvas

In CSS1, user agents were allowed to interpret all dotted, dashed, double, groove,

ridge, inset, and outset styles as solid.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullNoneNoneNoneNone

Internet Explorer for Windows (up to and including version 7) and Firefox 1.0

provide no support for outline.

outline-width

outline-width: { thin | medium | thick | length |

inherit } ;

The outline-width property sets the

width of the outline that’s drawn

around an element. See outline (p. 261)

for more information about outlines.

Note that even though an

outline-width has been set,

outline-style must have a value other

than none before the outline will show.

Example

This style rule assigns an outline with a
2px width on focus to anchor elements
within the element with ID "example":

#example a:focus {
 outline-width: 2px;
 outline-style: solid;
}

SPEC
version initialinherited

CSS2, 2.1mediumNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1.5+IE7
FULLFULLFULLNONE

Value

The property takes the same values as border-width (p. 254)—for example, a CSS

length (px, pt, em, and so on) or one of the allowed keywords—but percentage or

negative values are not allowed.

261 Box Properties

The keyword width values of thin, medium, and thick aren’t explicitly defined—their

display will depend on the user agent—but have the following meaning: thin <=

medium <= thick.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullNoneNoneNoneNone

Internet Explorer for Windows (up to and including version 7) and Firefox 1.0

provide no support for outline.

Box Properties

outline

outline: { [outline-width] [outline-style]

[outline-color] | inherit } ;

The shorthand property outline sets

the outline-color, outline-style, and

outline-width around an element

using the values specified.

An outline is similar to a border in

that a line is drawn around the element;

unlike borders, outlines won’t allow us

to set each edge to a different width, or

set different colors and styles for each

edge. An outline is the same on all sides.

Example

This style rule assigns a 2px red outline on
focus to anchor elements within the
element with ID "example":

#example a:focus {
 outline: 2px solid red;
}

Outlines do not take up space in the flow of the document (and will not cause

overflow), which may cause them to overlap other elements on the page. The fact

that outlines don’t have any impact on surrounding elements (apart from

overlapping) can be very useful in the debugging of layouts. We can apply an outline

to all elements within a problematic section to see exactly what’s going on, and

where the elements are placed. Unlike borders, adding outlines won’t disturb the

flow of the document at all.

SPEC
version initialinherited

CSS2, 2.1noneNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1.5+IE7
FULLFULLFULLNONE

The Ultimate CSS Reference 262

Outlines are usually drawn just outside the border edge of an element, although

again the exact position isn’t defined, and can vary between user agents. An outline

placed around inline elements such as text will closely hug the edges of that text,

even where the text flows over several lines and may result in a non-rectangular,

jagged box. This behavior represents a significant difference from the border

property, which has only a rectangular shape.

Outlines allow authors to apply visual cues to elements to make them stand out

when they take focus. Some user agents apply an outline to web page link elements

when they have focus—such as when the user’s tabbing through a list of links.

Changing an outline’s appearance on focus won’t cause the document to reflow.

Value

Refer to the outline-width (p. 260), outline-style (p. 259), and outline-color

(p. 258) properties for information on their allowed values.

As with most shorthand properties, all the properties listed need not be specified,

but any omitted properties will revert to their default values. In the case of

outline-style, omitting a value will cause no outline to show at all (unless it’s

redefined subsequently) because the default value for outline-style is none.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullNoneNoneNoneNone

Internet Explorer for Windows (up to and including version 7) and Firefox 1.0

provide no support for outline.

Chapter 8
Layout Properties
Layout properties allow authors to control the visibility, position, and behavior of

the generated boxes for document elements. CSS layout is a complex topic and

further information can be found in CSS Layout and Formatting (p. 139).

Layout Properties

The Ultimate CSS Reference 264

display

display: { block | inline | inline-block |

inline-table | list-item | run-in | table |

table-caption | table-cell | table-column |

table-column-group | table-footer-group |

table-header-group | table-row | table-row-group |

none | inherit } ;

SPEC
version initialinherited

CSS1, 2, 2.1inlineNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLPARTIAL PARTIAL

This property controls the type of box

an element generates.

The computed value may differ from

the specified value for the root element

and for floated or absolutely positioned

elements; see The Relationship Between

display, position, and float (p. 184) for

details about the relationship between

the display, float (p. 269), and

position (p. 267) properties.

Example

The following rule will cause a elements
that are descendants of the .menu element
to render as block elements instead of
inline elements:

.menu a {
 display: block;
}

Note that a user agent style sheet may override the initial value of inline for some

elements.

Value

block	 block makes the element generate a block box.

inline	 inline makes the element generate one or more inline

boxes.

inline-block	 inline-block makes the element generate a block box

that’s laid out as if it were an inline box.

inline-table	 inline-tablemakes the element behave like a table that’s

laid out as if it were an inline box.

265Layout Properties

list-item

run-in

table

table-caption

table-cell

table-column

table-column-group

table-footer-group

table-header-group

table-row

table-row-group

list-item makes the element generate a principal block

box and a list-item inline box for the list marker.

A value of run-in makes the element generate either a

block box or an inline box, depending on the context. If

the run-in box doesn’t contain a block box, and is followed

by a sibling block box (except a table caption) in the

normal flow that isn’t, and doesn’t contain, a run-in box,

the run-in box becomes the first inline box of the sibling

block box. Otherwise, the run-in box becomes a block

box.

table makes the element behave like a table.

table-caption makes the element behave like a table

caption.

table-cell makes the element behave like a table cell.

table-column makes the element behave like a table

column.

table-column-group makes the element behave like a

table column group.

table-footer-group makes the element behave like a

table footer row group.

table-header-group makes the element behave like a

table header row group.

table-row makes the element behave like a table row.

table-row-group makes the element behave like a table

body row group.

Layout Properties

The Ultimate CSS Reference 266

none A value of none makes the element generate no box at all.

Descendant boxes cannot generate boxes either, even if

their display property is set to something other than none.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullPartial Partial Partial Partial Partial Partial

Internet Explorer versions up to and including 7:

■	 don’t support the values inline-table, run-in, table, table-caption,

table-cell, table-column, table-column-group, table-row, and

table-row-group

■	 only support the values table-footer-group and table-header-group for thead

and tfoot elements in HTML

■ only support the value inline-block for elements that are naturally inline or

have been set to inline outside the declaration block

■	 treat block as list-item on li elements in HTML

■	 will apply a layout (p. 158) to inline-block elements

■	 don’t support the value inherit

Firefox versions up to and including 2.0, and Opera 9.2 and prior versions:

■ only support the value table-column-group for colgroup elements in HTML

■ only support the value table-column for col elements in HTML

Firefox versions up to and including 2.0 don’t support the values inline-block,

inline-table, or run-in.

267Layout Properties

position

position: { absolute | fixed | relative | static |

inherit } ;

The position property, together with

the float property, controls the way in

which the position of the element’s

generated box is computed. See

Positioning (p. 176) for details about

element positioning.

Boxes with a position value other than

static are said to be positioned. Their

vertical placement in the stacking

context is determined by the z-index

(p. 279) property.

Value

absolute

fixed The value fixed generates an absolutely positioned box that’s

positioned relative to the initial containing block (normally the

viewport). The position can be specified using one or more of the

properties top (p. 275), right (p. 276), bottom (p. 277), and left

(p. 278). In the print media type, the element is rendered on every page.

relative The value relative generates a positioned box whose position is first

computed as for the normal flow. The generated box is then offset from

this position according to the properties top (p. 275) or bottom (p. 277)

SPEC
version initialinherited
CSS2staticNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLBUGGY

Example

This style rule makes the element with ID
"sidebar" absolutely positioned at the top
right-hand corner of its containing block:

#sidebar {
 position: absolute;
 top: 0;
 right: 0;
}

The value absolute generates an absolutely positioned box that’s

positioned relative to its containing block. The position can be specified

using one or more of the properties top (p. 275), right (p. 276), bottom

(p. 277), and left (p. 278). Absolutely positioned boxes are removed

from the flow and have no effect on later siblings. Margins on absolutely

positioned boxes never collapse with margins on other boxes.

Layout Properties

The Ultimate CSS Reference 268

and/or left (p. 278) or right (p. 276). The position of the following

box is computed as if the relatively positioned box occupied the

position that was computed before the box was offset. This value cannot

be used for table cells, columns, column groups, rows, row groups, or

captions.

static	 The value static generates a box that isn’t positioned, but occurs in

the normal flow. The properties top (p. 275), right (p. 276), bottom

(p. 277), left (p. 278), and z-index (p. 279) are ignored for static boxes.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer for Windows versions up to and including 6 don’t support the

value fixed.

Internet Explorer for Windows versions up to and including 6 have problems with

margin calculations for absolutely positioned boxes. Percentages for dimensions

are computed relative to the parent block, rather than the containing block. Consider

this example:

<div id="containing">

 <div id="parent">

 <div id="child"></div>

 </div>

</div>

#containing {

 position: relative;

 width: 200px;

 height:200px;

}

#parent {

 width: 100px;

 height: 100px;

}

#child {

 position: absolute;

269Layout Properties

top: 10px;

 left: 10px;

 width: 50%;

 height: 50%;

}

Here, the element with ID "child" is absolutely positioned, and therefore its

containing block is the one generated by the element with the (convenient) ID

"containing"—the "child" element’s nearest positioned ancestor. IE6 and earlier

versions will make the "child" element 50 pixels square—50% of the element with

the ID "parent"—instead of the expected 100 pixels, since they base the calculation

on the dimensions of the parent block rather than the containing block.

Internet Explorer versions up to and including 7:

■	 always generate a new stacking context (p. 179) for positioned boxes, even if

z-index is auto

■	 don’t support the value inherit

In Internet Explorer for Windows versions up to and including 7, a position value

of absolute will cause an element to gain a layout (p. 158), as will a value of fixed

in version 7.

Layout Properties

float

float: { left | right | none | inherit } ;

This property specifies whether or not

a box should float and, if so, if it should

float to the left or to the right. A floating

box is shifted to the left or to the right

as far as it can go, and non-floating

content in the normal flow will flow

around it on the opposite side. The

float property is ignored for elements

Example

This style rule makes the box generated by
the element with ID "nav" float to the left:

#nav {
 float: left;
}

SPEC
version initialinherited
CSS1noneNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
BUGGYFULLBUGGYBUGGY

The Ultimate CSS Reference 270

that are absolutely positioned. User agents are also allowed to ignore it when it’s

applied to the root element.

See Floating and Clearing (p. 180) for more information about the behavior of floated

elements.

Value

left makes the element generate a block box that is floated to the left

right makes the element generate a block box that is floated to the right

none makes the element generate a box that is not floated

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

BuggyFullFullFullBuggyBuggyBuggyBuggyBuggyBuggy

Internet Explorer versions up to and including 6 add three pixels of padding (in the

floated direction) to adjacent line boxes.

In Internet Explorer versions up to and including 6, the left or right margins are

doubled on floated elements that touch their parents’ side edges. The margin value

is doubled on the side that touches the parent. A simple fix for this problem is to

set display to inline for the floated element.

Internet Explorer for Windows versions up to and including 7:

■	 will place a floated box below an immediately preceding line box

■	 will expand a left-floated box to the width of the containing block if it has a

right-floated child and a computed width of auto

■	 will apply a layout (p. 158) to a floated element

■	 don’t support the value inherit

In Firefox versions up to and including 2.0, a floated box appears below an

immediately preceding line box. A left-floated box with a right-floated child and a

computed width of auto expands to the width of the containing block.

271 Layout Properties

In Opera up to and including version 9.2, if the computed width of the floated box

is auto and it has floated children, its width is computed as if the floats don’t wrap

and aren’t cleared.

Other Relevant Stuff
clear (p. 271)

prevents a box from being adjacent to floated boxes

clear

clear: { none | left | right | both | inherit } ;

This property specifies which sides of

an element’s box (or boxes) can’t be

adjacent to any floated boxes. This

property can clear an element only from

floated boxes within the same block

formatting context (p. 164). It doesn’t

clear the element from floated child

boxes within the element itself.

The clearance is achieved by adding

space above the top margin of the

element, if necessary, until the top of the element’s border edge is below the bottom

edge of any boxes floated in the specified direction or directions.

Example

This style rule prevents all pre elements
in an HTML document from being adjacent
to a previously floated box:

pre {
 clear: both;
}

When clear is specified for a run-in box, it applies to the block box to which the

run-in box eventually belongs.

See Floating and Clearing (p. 180) for more information about the behavior of cleared

elements.

SPEC
version initialinherited
CSS1noneNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLBUGGY

Layout Properties

The Ultimate CSS Reference 272

Value

left	 The value left adds space above the element’s generated box, if necessary,

to put its top border edge below the bottom edge of any left-floating boxes

previously generated by elements in the same block formatting context.

right	 The value right adds space above the element’s generated box, if necessary,

to put its top border edge below the bottom edge of any right-floating boxes

previously generated by elements in the same block formatting context.

both	 The value both adds space above the element’s generated box, if necessary,

to put its top border edge below the bottom edge of any floating boxes that

were previously generated by elements in the same block formatting context.

none	 The value none doesn’t clear any previously floated boxes.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer for Windows versions up to and including 6 exhibit a bug known

as the peekaboo bug, wherein a cleared element that touches the floating box(es) it

clears may become invisible.

Internet Explorer for Windows version 7:

■	 doesn’t clear elements with an unshared ancestor whose height value is anything

other than auto

■	 doesn’t clear floated elements if the clear property is specified for an element

floating in the opposite direction

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Other Relevant Stuff
float (p. 269)

specifies whether a box should float to the left or right, or not float at all

273Layout Properties
Layout Properties

visibility

visibility: { visible | hidden | collapse |

inherit } ;

This property specifies whether an

element is visible—that is, whether the

box(es) that are generated by an element

are rendered.

Note that even if a box in the normal

flow is hidden, it still affects the layout

of other elements, unlike the behavior

that occurs when we suppress box

generation altogether by setting display

to none. Descendant boxes of a hidden box will be visible if their visibility is set

to visible, whereas descendants of an element for which display is set to none

can never generate boxes of their own.

Example

This style rule makes the element with ID
"dynamic" generate an invisible box. It can
be made visible using client-side scripting:

#dynamic {
 visibility: hidden;
}

The initial value and the inheritability were changed in CSS2.1 to address the

previously undefined state for the root element.

Value

visible	 The value visible makes the generated boxes visible.

hidden	 The value hiddenmakes the generated boxes invisible without removing

them from the layout. Descendant boxes can be made visible.

collapse	 The value collapse is only meaningful for certain internal table objects:

rows, row groups, columns, and column groups. It causes the object to

SPEC
version initialinherited

CSS2, 2.1visibleYES
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
BUGGYPARTIAL FULLPARTIAL

The Ultimate CSS Reference 274

be removed from the display; the space it occupied will be filled by

subsequent siblings. This doesn’t affect the table layout in any other

way, so the user agent doesn’t have to recompute the layout of the table.

If a spanned row or column intersects the collapsed object, it is clipped.

When it’s specified for any other element than these internal table

objects, collapse causes the same behavior as hidden.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

BuggyPartial Partial Partial FullFullFullPartial Partial Partial

Internet Explorer for Windows versions up to and including 7:

■	 don’t support the value collapse

■	 don’t support the value inherit

■	 don’t allow descendant boxes of an element whose visibility value is hidden

to be made visible if the ancestor has a layout (p. 158)

Opera 9.2 and prior versions treat the value collapsed as hidden for all elements.

Safari versions up to and including 2.0 don’t support the value collapse.

275Layout Properties

top

top: { length | percentage | auto | inherit } ;

For absolutely positioned boxes, this

property specifies how far the top

margin edge of the box is offset below

the top padding edge of its containing

block. However, should the value for

top be auto (the initial value), the top

margin edge of the box will be

positioned at the top content edge of its

containing block.

For relatively positioned boxes, this

property specifies how far the top edge of the box is offset below the position it

would have had in the normal flow.

Example

This style rule makes the element with ID
"logo" generate a relatively positioned box
that’s shifted down by ten pixels:

#logo {
 position: relative;
 top: 10px;
}

Compatibility

SPEC
version initialinherited
CSS2autoNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7+

FULLFULLFULLFULL

Layout Properties Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullBuggyBuggy

Internet Explorer for Windows versions up to and including 6:

■	 compute percentage values on the basis of the height of the parent block, rather

than of the containing block

■	 don’t support the specification of both the position and the dimensions of an

absolutely positioned element using top, right, bottom, and left together;

they’ll use the last vertical and horizontal position specified, and need the

dimensions to be specified using width and height

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

The Ultimate CSS Reference 276

right

right: { length | percentage | auto | inherit } ;

For absolutely positioned boxes, this

property specifies how far the right

margin edge of the box is offset from the

left of the right padding edge of its

containing block.

For relatively positioned boxes, this

property specifies how far the right edge

of the box is offset from the left of the

position it would have had in the

normal flow.

If both right and left have a value

other than auto, the offset is over-constrained. If the direction property is ltr,

right will be ignored. If direction is rtl, left will be ignored.

Example

This style rule makes the element with ID
"sidebar" generate an absolutely
positioned box at the top right-hand corner
of its containing block:

#sidebar {
 position: absolute;
 top: 0;
 right: 0;
}

Compatibility

SPEC
version initialinherited
CSS2autoNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7+
FULLFULLFULLFULL

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullBuggyBuggy

Internet Explorer for Windows versions up to and including 6:

■	 compute percentage values on the basis of the width of the parent block, rather

than that of the containing block

■	 don’t support the specification of both the position and the dimensions of an

absolutely positioned element using top, right, bottom, and left together;

they’ll use the last vertical and horizontal position specified, and need the

dimensions to be specified using width and height

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

277Layout Properties

bottom

bottom: { length | percentage | auto | inherit } ;

For absolutely positioned boxes, this

property specifies how far the bottom

margin edge of the box is offset above

the bottom padding edge of its

containing block.

For relatively positioned boxes, this

property specifies how far the bottom

edge of the box is offset above the

position it would have had in the

normal flow.

If both top and bottom have a value other than auto, bottom is ignored.

Example

This style rule makes the element with ID
"logo" generate a relatively positioned box
that’s shifted ten pixels upward:

#logo {
 position: relative;
 bottom: 10px;
}

Compatibility

SPEC
version initialinherited
CSS2autoNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7+

FULLFULLFULLFULL

Layout Properties

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullBuggyBuggy

Internet Explorer for Windows versions up to and including 6:

■	 compute percentage values on the basis of the height of the parent block, rather

than of the containing block

■	 are one pixel off when bottom and right are used to specify the position, and

the offset is an odd number of pixels

■	 don’t support the specification of both the position and the dimensions of an

absolutely positioned element using top, right, bottom, and left together;

they’ll use the last vertical and horizontal position specified, and need the

dimensions to be specified using width and height

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

The Ultimate CSS Reference 278

left

left: { length | percentage | auto | inherit } ;

For absolutely positioned boxes, this

property specifies how far the left

margin edge of the box is offset to the

right of the left padding edge of its

containing block. However, should the

value for left be auto (the initial

value), the left margin edge of the box

is positioned at the left content edge of

its containing block.

For relatively positioned boxes, this

property specifies how far the left edge

of the box is offset to the right of the

position it would have had in the normal flow. If both right and left have a value

other than auto, the offset is over-constrained. If the direction property is ltr,

right will be ignored. If direction is rtl, left will be ignored.

Example

This style rule makes the element with ID
"nav" generate an absolutely positioned
box at the top left-hand corner of its
containing block:

#nav {
 position: absolute;
 top: 0;
 left: 0;
}

Compatibility

SPEC
version initialinherited
CSS2autoNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7+
FULLFULLFULLFULL

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullBuggyBuggy

Internet Explorer for Windows versions up to and including 6:

■	 compute percentage values on the basis of the width of the parent block, rather

than that of the containing block

■	 don’t support the specification of both the position and the dimensions of an

absolutely positioned element using top, right, bottom, and left together;

they’ll use the last vertical and horizontal position specified, and need the

dimensions to be specified using width and height

279Layout Properties

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

z-index

z-index: { integer | auto | inherit } ;

This property specifies the stack level

of a box whose position value is one

of absolute, fixed, or relative.

The stack level refers to the position of

the box along the z axis, which runs

perpendicular to the display. The higher

the value, the closer the box is to the

user; in other words, a box with a high

z-indexwill obscure a box with a lower

z-index occupying the same location

along the x and y axes.

has stack level 0 (zero) in the new context.

The value auto gives the box the same stack level as its parent, and doesn’t establish

a new stacking context.

Compatibility

SPEC
version initialinherited
CSS2autoNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLBUGGYBUGGY

Example

This style rule makes the element with ID
"warning" absolutely positioned and
assigns it a higher stack level than its
siblings:

#warning {
 position: absolute;
 z-index: 1;
}

See Stacking Contexts (p. 179) for more information about stacking contexts.

Value

An integer value—which can be negative—sets the stack level of the box in the

current stacking context, and also establishes a new stacking context. The box itself

Layout Properties

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullBuggyBuggyBuggyBuggyBuggyBuggy

The Ultimate CSS Reference 280

In Internet Explorer for Windows versions up to and including 6, select elements

always appear on top of everything else; their stack level can’t be changed.

Internet Explorer for Windows versions up to and including 7 always use the nearest

positioned ancestor to determine the stacking context for the element in question.

Internet Explorer for Windows version 7 treats the value auto as if it were 0 (zero).

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

In Firefox versions up to and including 2, a negative stack level positions the box

behind the stacking context, rather than above the context’s background and borders

and below block-level descendants in the normal flow.

Other Relevant Stuff
position (p. 267)

specifies the positioning scheme used to position an element

overflow

overflow: { auto | hidden | scroll | visible |

inherit } ;

This property specifies the behavior that

occurs when an element’s content

overflows the element’s box.

The default behavior is to make the

overflowing content visible, but it can

be changed so that the content is

clipped to the confines of the element’s

box, optionally providing a mechanism

for scrolling the content.

Example

This style rule makes the pre element type
in HTML generate a fixed-sized box with
visible scrollbars:

pre {
 width: 40em;
 height: 20em;
 overflow: scroll;
}

SPEC
version initialinherited
CSS2visibleNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7+
FULLFULLFULLFULL

281 Layout Properties

If the overflow property is applied to the body or html elements in an HTML

document, the user agent may apply it to the viewport. This does not apply to

XHTML, though.

If a scrollbar needs to be provided, the user agent should insert it between the

element’s outer padding edge and its inner border edge. The space occupied by the

scrollbar should be subtracted (by the user agent) from the computed width or

height, so that the inner border edge is preserved.

Boxes with an overflow value other than visible will expand vertically to enclose

any floated descendant boxes.

Margins will never collapse for a box with an overflow value other than visible.

Value

auto	 The behavior of auto isn’t specified in any detail in the CSS2.1

specification. In existing implementations it provides scrollbar(s) when

necessary, but it doesn’t show scrollbars unless the content overflows

the element’s box.

hidden	 hidden causes content that overflows the element’s box to be clipped.

No scrolling mechanism will be provided, so the overflow will be

invisible and inaccessible.

scroll	 scroll clips overflowing content, just like hidden, but provides a

scrolling mechanism so that the overflow can be accessed. This scrolling

mechanism is present whether the content overflows the element’s box

or not, to prevent it from appearing and disappearing in a dynamic

layout. When the output medium is print, this value allows overflowing

content to be printed (as if the value were visible).

visible	 visible allows overflowing content to be visible. It will be rendered

outside the element’s box, and may thus overlap other content.

Layout Properties

The Ultimate CSS Reference 282

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullBuggyBuggy

Internet Explorer for Windows versions up to and including 6:

■	 will not apply a value specified for the body element to the viewport, if the

computed value for the html element is visible

■	 will increase the width and height of the element when the value is specified as

visible, instead of rendering the overflow outside the element’s box; if the value

is auto, hidden, or scroll, and the element’s width is specified as auto, the

width will increase to avoid overflow

In Internet Explorer for Windows versions up to and including 7:

■	 a relatively positioned child of an element whose overflow value is auto or

scroll will behave as if the position were specified as fixed; if overflow is

hidden, a relatively positioned element will be visible if the generated box lies

outside the parent’s box

■	 the value inherit is unsupported

In Internet Explorer for Windows version 7, the values auto, hidden, and scroll

cause an element to gain a layout (p. 158).

Firefox versions up to and including 2 apply overflow to table row groups.

283Layout Properties

clip

clip: { shape | auto | inherit } ;

This property sets the clipping region

for an absolutely positioned element.

Any part of an element that would

render outside the clipping region will

be invisible. This includes the content

of the element and its children,

backgrounds, borders, outlines, and

even any visible scrolling mechanism.

Clipping may be further influenced by

any clipping regions that are set for the

element’s ancestors, and whether or not

those have a visibility property

whose value is something other than

border box.

Value

If the value is specified as auto, no clipping will be applied.

The only shape value that’s allowed in CSS2.1 is a rectangle, which must be specified

using the rect() functional notation. The function takes four comma-separated

arguments—top, right, bottom, and left—in the usual TRouBLe order. Each argument

is either auto or a length, and negative length values are allowed. The top and

bottom positions are relative to the top border edge of the element’s box. The left

and right positions are relative to the left border edge in a left-to-right environment,

or to the right border edge in a right-to-left environment. When specified as auto,

the position is that of the corresponding border edge.

SPEC
version initialinherited

CSS2, 2.1autoNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLPARTIAL

Example

This style rule assigns a clipping region of
200×100 pixels for the element with ID
"tunnel-vision". The upper left-hand
corner of the clipping region is at position
(50,50) with respect to the element’s box:

#tunnel-vision {
 width: 400px;
 height: 200px;
 clip: rect(50px, 250px, 150px,

➥ 50px);
}

visible. Clipping may also occur at the edges of the browser window, or the margins

of the paper (when printing).

The default clipping region is a rectangle with the same dimensions as the element’s

Layout Properties

The Ultimate CSS Reference 284

Note that the interpretation of positions specified in the rect() functional notation

changed between CSS2 and CSS2.1. In CSS2, each value specified the offset from

the corresponding border edge.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullPartial Partial Partial

Internet Explorer for Windows versions up to and including 7 do not support the

recommended syntax for the rect() notation. However, they do support a deprecated

syntax where the arguments are separated by whitespace rather than commas.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Chapter 9
List Properties
These properties allow the author to control the presentation of list item markers.

For further information about list formatting, see List Formatting (p. 168).

List Properties

The Ultimate CSS Reference 286

list-style-type

list-style-type: { circle | disc | square | armenian

| decimal | decimal-leading-zero | georgian |

lower-alpha | lower-greek | lower-latin | lower-roman

| upper-alpha | upper-latin | upper-roman | none |

inherit } ;

SPEC
version initialinherited
CSS1, 2discYES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLPARTIAL

This property specifies the type of list

marker for an item in a list—an element

whose display property has the value

list-item.

The list style type only applies if

list-style-image is set to none, or to

a URI that can’t be displayed.

Example

This style rule applies roman numerals as
the numbering scheme to items in an
ordered list:

ol li {
 list-style-type: upper-roman;
}

List markers can either be glyphs (that

is, bullets), or comprise a numeric or alphabetic numbering system. The CSS2.1

specification doesn’t define how alphabetic numbering wraps at the end of the

alphabet sequence.

The color of the list markers is the same as the computed value of the color property

for the list items.

The exact position of the list marker can’t be specified beyond the styling allowed

by the list-style-position (p. 288) property.

Value

The values circle, disc, and square generate glyphs as list markers. The exact

appearance of these glyphs isn’t defined by the CSS2.1 specification, but is left to

the user agent.

Numeric numbering systems include:

■ armenian: traditional Armenian numbering

■ decimal: decimal numbers (1, 2, 3, …)

287List Properties

■	 decimal-leading-zero: decimal numbers where values less than ten are padded

by an initial zero (01, 02, 03, …)

■	 georgian: traditional Georgian numbering

■	 lower-roman: lowercase roman numerals (i, ii, iii, …)

■	 upper-roman: uppercase roman numerals (I, II, III, …)

Alphabetic numbering systems:

■	 lower-greek: lowercase Greek letters

■	 lower-latin or lower-alpha: lowercase Latin letters (a, b, c, …)

■	 upper-latin or upper-alpha: uppercase Latin letters (A, B, C, …)

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullPartial Partial Partial

Internet Explorer for Windows versions up to and including 7 don’t support the

values armenian, decimal-leading-zero, georgian, or lower-greek. Nor do they

support the values lower-latin or upper-latin, although they do support the

alternative forms lower-alpha and upper-alpha.

These browsers will not increment the list markers in numbering systems if the list

item has a layout.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

List Properties

The Ultimate CSS Reference 288

list-style-position

list-style-position: { inside | outside | inherit } ;

This property specifies where the list

marker is rendered with respect to the

list item’s principal block box.

Value

outside	 The value outside causes

the list marker to be

rendered outside the

principal block box. Its

precise location isn’t

defined by the CSS2.1 specification. Contemporary browsers seem to

render it approximately 1.5em to the left of the principal block box in

a left-to-right environment, or 1.5em to the right of the principal block

box in a right-to-left environment. Some browsers use padding on the

list to make room for the marker box, while others use a margin.

Example

This style rule makes the markers for all
items within the list with ID "compact"
appear on the inside:

#compact li {
 list-style-position: inside;
}

inside	 The value inside makes the list marker the first inline box in the

principal block box. Its exact location is not defined by the CSS2.1

specification.

Compatibility

SPEC
version initialinherited
CSS1outsideYES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLFULL

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullFullFull

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

289List Properties

list-style-image

list-style-image: { uri | none | inherit } ;

This property specifies the image to use

as a list marker for an item in a list (an

element whose display property has

the value list-item). If the specified

image is available, it will replace any

marker specified by the

list-style-type property.

The exact position of the list marker

image can’t be specified beyond what

the list-style-position (p. 288)

property allows.1

Example

This style rule assigns an image as the list
marker for all items in the list with ID
"links":

#links li {
 list-style-image:

➥ url("/images/link.png");
}

Value

If the property value is specified as none, no list marker image will be used. Instead,

the list-style-type property will control what type of list marker—if any—will

be rendered.

If the value is specified as a URI using the url() functional notation (p. 38), the

image at that URI will be used as the list marker if it’s available.

Compatibility

SPEC
version initialinherited
CSS1noneYES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLBUGGY

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

In Internet Explorer for Windows versions up to and including 7, a floated list item

will not display any list marker image.

1	 It has become common practice, however, to apply a background image to the list items in order
to gain precise control over list item marker image positioning.

List Properties

The Ultimate CSS Reference 290

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

list-style

list-style: { list-style-type list-style-position

list-style-image | inherit } ;

This shorthand property sets all three

list style properties simultaneously.

Note that an omitted property value will

be set to that property’s initial value.

Value

Refer to the individual properties for

information on allowed and initial

values.

Compatibility

Example

This style rule uses inheritance to set the
list marker for items within the element
with ID "legal" to be uppercase Latin
letters that appear inside the list items’
principal block boxes:

#legal {
 list-style: upper-latin inside;
}

SPEC
version initialinherited
CSS1see belowYES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer for Windows versions up to and including 7 will only recognize

a list image URI if it’s immediately followed by whitespace, or the end of the

declaration.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Chapter 10
Table Properties

Table Properties
These properties allow us to control the layout and presentation of table elements.

For further information about table formatting, see Table Formatting (p. 168).

The Ultimate CSS Reference 292

table-layout

table-layout: { auto | fixed | inherit } ;

This property specifies the layout

algorithm that’s used to lay out a table

or an inline table (an element whose

display property has one of the values

table or inline-table). Two table

layout algorithms are available:

automatic and fixed. See Table

Formatting (p. 168) for details of these

algorithms.

Note that the automatic algorithm will

normally be used if the table’s width is specified as auto, although user agents are

allowed (but not required) to attempt to use the fixed algorithm in these cases if so

specified by the CSS author. This special case only applies to tables, however, not

inline tables.

Example

This style rule ensures that the table
element with the ID "results" is laid out
using the fixed layout algorithm:

#results {
 width: 24em;
 table-layout: fixed;
}

Value

auto selects the automatic table layout algorithm

fixed selects the fixed table layout algorithm, if applicable

Compatibility

SPEC
version initialinherited
CSS2autoNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLFULL

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullFullFull

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Other Relevant Stuff
display (p. 264)

293Table Properties

controls the type of box generated by an element

width (p. 194)

sets the content width of a block or a replaced element

border-collapse

border-collapse: { collapse | separate | inherit } ;

This property specifies the border

model that’s to be used for a table or an

inline table—that is, an element whose

display property has one of the values

table or inline-table.

See Table Formatting (p. 168) for details

about the table border models.

Value

Example

This style rule makes the table element
with the ID "results" use the collapsing
borders model:

#results {
 border-collapse: collapse;
}

collapse	 selects the collapsing

borders model (the border-spacing and empty-cells properties will

be ignored)

separate	 selects the separated borders model (the border-spacing and

empty-cells properties will be taken into account)

Note that the initial value was collapse in CSS2, but it was changed to separate

in CSS2.1.

Compatibility

SPEC
version initialinherited

CSS2, 2.1separateYES
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLFULL

Table Properties

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullFullFull

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Other Relevant Stuff
display (p. 264)

controls the type of box generated by an element

border-spacing (p. 294)

sets the cell spacing for a table element that uses the separated borders model

empty-cells (p. 295)

controls the rendering of empty cells in a table that uses the separated borders model

The Ultimate CSS Reference 294

border-spacing

border-spacing: { length [length] | inherit } ;

This property sets the spacing between

adjacent table cells’ borders using the

separated borders model. If the

collapsing borders model is used, this

property is ignored.

Note that the distance between a cell

border and the table border is the

corresponding border spacing plus the

table’s padding for that side.

See Table Formatting (p. 168) for details

about the table border models.

Example

This style rule sets 1em of horizontal
spacing and 0.5em of vertical spacing
between the cells of the table element with
the ID "results":

#results {
 border-collapse: separate;
 border-spacing: 1em 0.5em;
}

The CSS2.1 specification states that user agents may apply this property to frameset

elements (therefore replacing the framespacing attribute).

Value

Negative values are not allowed.

The border spacing can be specified using one or two length values. If two values

are given, the first sets the horizontal spacing, and the second sets the vertical

SPEC
version initialinherited
CSS20YES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7
FULLFULLFULLNONE

295Table Properties

spacing. If only one value is given, it sets both the horizontal and vertical spacing

to the specified value.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullNoneNoneNone

Internet Explorer for Windows versions up to and including 7 do not support this

property.

Other Relevant Stuff
border-collapse (p. 293)

specifies the border model for a table element

display (p. 264)

controls the type of box generated by an element

Table Properties

empty-cells

empty-cells: { hide | show | inherit } ;

This property controls the rendering of

the borders and backgrounds of cells

that have no visible content in a table

that’s using the separated borders

model. If the collapsing model is used,

this property is ignored.

The property applies only to elements

whose display property has the value

table-cell, but since it’s inherited, it

can also be set on the whole table, a row group, or a row.

Example

This style rule hides empty cells in the
table element with the ID "results":

#results {
 empty-cells: hide;
}

A cell is considered to have no visible content if any of the following cases apply:

SPEC
version initialinherited
CSS2showYES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE7
BUGGYFULLBUGGYNONE

The Ultimate CSS Reference 296

■ It has no content at all.

■ It contains only carriage returns, line feeds, tab characters, or blank spaces.

■ Its visibility property is set to hidden.

A non-breaking space is considered to be visible content.

Value

show	 The value show means borders will be drawn around empty cells, and

backgrounds will be drawn behind them.

hide	 The value hide means that no borders or backgrounds will display empty

cells. If all the cells in a row have this setting for empty-cells, and none of

them have any visible content, the entire row will behave as if it had

display:none.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

BuggyFullFullFullBuggyBuggyBuggyNoneNoneNone

Internet Explorer for Windows versions up to and including 7 don’t support this

property, and will behave as if all tables had empty-cells set to hide.

Firefox versions up to and including 2 don’t hide the row if all the cells have

empty-cells:hide and none of them have any visible content.

Opera versions up to and including 9.2 won’t hide the row, and will display cell

backgrounds, if empty-cells:hide is applied to all the cells, and none of them have

any visible content.

Other Relevant Stuff
border-collapse (p. 293)

specifies the border model for a table element

display (p. 264)

controls the type of box generated by an element

297Table Properties
Table Properties

caption-side

caption-side: { bottom | top | inherit } ;

This property sets the vertical position

of a table caption box (an element

whose display property has the value

table-caption).

To affect the horizontal alignment of the

caption text, use the text-align

property.

The caption box is positioned relative

to the table box. See Table Formatting

Example

This style rule positions all table captions
below their parent tables:

caption {
 caption-side: bottom;
}

(p. 168) for details.

Value

bottom puts the caption below the table box

top puts the caption above the table box

CSS2 also defined the values left and right for this property, but they were

removed in CSS2.1.

Compatibility

SPEC
version initialinherited

CSS2, 2.1topYES
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE7
FULLFULLFULLNONE

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullNoneNoneNone

Internet Explorer for Windows versions up to and including 7 don’t support this

property.

Other Relevant Stuff
display (p. 264)

controls the type of box generated by an element

text-align (p. 330)

sets the horizontal text alignment

The Ultimate CSS Reference 298

Chapter 11
Color and Backgrounds
These properties allow the author to control the foreground and background color

of elements and the placement of background images.

background-color

background-color: { color | transparent | inherit } ;

This property sets the

background-color of an element; it’s

good practice to specify a foreground

color (color) at the same time, to ensure

that conflicts don’t arise with colors or

backgrounds that are defined elsewhere.

The background of an element is the

area covered by the width and height

of that element (whether those

Example

This style rule assigns a white background
(#fff) to the element with ID "example" :

#example{
 background-color: #fff;
}

SPEC
version initialinherited
CSS1transparentNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLBUGGY

Color and Backgrounds

The Ultimate CSS Reference 300

dimensions are set explicitly, or the content dictates them); it also includes the area

covered by padding and borders. A background-color (or background-image) that’s

applied to an element will appear beneath the foreground content of that element,

and the area covered by the padding and border properties for the element. This

coverage area is evident where an element has transparent (or dotted or dashed)

borders, and the background is seen beneath the borders (or between the dots). Note

that Internet Explorer versions up to and including 6 don’t support transparent

borders.

Some area of the element in question must be visible if the background-color is to

show through. If the element has no intrinsic height (defined either by its content

or its dimensions), the background will not be seen. If an element contains only

floated children which haven’t been cleared—see clear (p. 271)—then again the

background won’t show, as the element’s height will be zero.

Value

color takes any valid CSS color value or color keyword.

The keyword transparent sets the background-color to be transparent. This value

ensures that the content of any element that’s beneath the current element will be

visible through the transparent background. The default for background-color is

transparent, so there is no need to specify this value unless you’re overwriting

previous definitions.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer for Windows versions up to and including 7 will only apply the

background from inside the border’s edge when the element in question has a layout

(p. 158). If the element does not have a layout, the background-color or

background-image will slide under the borders as per the specifications.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Other Relevant Stuff
The CSS Box Model (p. 142)

301 Color and Backgrounds
Color and Backgrounds

background-image

background-image: { uri | none | inherit } ;

This property sets the background image

of an element via the specified URI. The

image is placed on top of the

background-color, and if the image is

opaque, the background-color will not

be visible beneath it. When you’re

setting a background-image, also set a

background-color, where possible, in

case the image is unavailable.

Example

This style rule assigns a background image
to the element with ID "example" :

#example {
 background-image:

➥ url(images/bg.gif);
}

SPEC
version initialinherited
CSS1noneNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLBUGGY

The background of an element is the

area covered by the width and height of that element (whether those dimensions

are set explicitly, or the content dictates them); it also includes the area covered by

padding and borders. A background-color (or background-image) that’s applied

to an element will appear beneath the foreground content of that element, and the

area covered by the padding and border properties for the element. This coverage

area is evident where an element has transparent (or dotted or dashed) borders,

and the background is seen beneath the borders (or between the dots). Note that

Internet Explorer versions up to and including 6 don’t support transparent borders.

Some area of the element in question must be visible so that the background-image

can show through. If the element has no intrinsic height (either defined by its content

or dimensions), the background won’t have any space in which to display. If an

element contains only floated children which haven’t been cleared—see clear

(p. 271)—again, the background won’t display, since the element’s height will be

zero.

The Ultimate CSS Reference 302

By default, the background-image is placed at the top-left (background-position)

of the element; it’s repeated along the x and y axes (background-repeat) and will

scroll with the document. These are the default settings that apply if you haven’t

explicitly set any others, and can be adjusted with the other background properties.

Refer to the other relevant stuff below for methods you can use to position and

control the image.

Value

A URI value (p. 38) specifies a location at which the image can be found.

The value none ensures that no background-image will be displayed; this is the

default setting, so you don’t need to define it explicitly unless you want to override

previous background-image declarations.

The value inherit would cause the element to inherit the background-image of its

parent. This approach would not normally be taken, as the element’s inherited

background image would most likely overlap the parent’s image. In most cases, the

parent’s background-image will be visible through the element’s transparent

background unless another background-image or background-color has been set.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer for Windows versions up to and including 7 will only apply the

background from inside the border’s edge when the element in question has a layout

(p. 158). If the element does not have a layout, the background-color or

background-image will slide under the borders as per the specifications.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Other Relevant Stuff
The CSS Box Model (p. 142)

303Color and Backgrounds

background-repeat

background-repeat: { repeat | repeat-x | repeat-y |

no-repeat | inherit } ;

SPEC
version initialinherited
CSS1repeatNO

BROWSER SUPPORT
Op9.2+Saf3+FF1+IE5.5+
FULLFULLFULLFULL

Example

This style rule causes a background-image
assigned to the element with ID "example"
to repeat along the x axis:

#example{
 background-repeat: repeat-x;
}

horizontal axes, and is repeated in both directions. We use the background-repeat

property to specify the axis along which an image should be repeated.

When a background image is repeated, it’s first placed according to the

background-position property, and then begins repeating from that point in both

directions. For example, a background-image that’s placed at a background-position

of center center (the center of the element), and which has a background-repeat

value of repeat, will repeat in both directions along the x and y axes—that is, up

and down, left and right, starting from the center.

The background of an element is the area covered by the width and height of that

Color and Backgrounds

The background-repeat property

controls whether or not a

background-image is repeated (tiled),

and if it is repeated, the property

defines along which of the specified

axes (x, y, or both) the image is to be

repeated.

By default, a background-image is

repeated along both vertical and

element (whether those dimensions are set explicitly, or the content dictates them);

it also includes the area covered by padding and borders. A background-color (or

background-image) that’s applied to an element will appear beneath the foreground

content of that element, and the area covered by the padding and border properties

for the element. This coverage area is evident where an element has transparent

(or dotted or dashed) borders, and the background is seen beneath the borders (or

between the dots). Note that Internet Explorer versions up to and including 6 don’t

support transparent borders.

The Ultimate CSS Reference 304

Some area of the element in question must be visible if the background-image is to

show through. If the element has no intrinsic height (either as defined by its content,

or by its dimensions), the background won’t be visible. If an element contains only

floated children that haven’t been cleared—see clear (p. 271)—no background will

show, as the element’s height will be zero.

The tiling and positioning of the background-image on inline elements isn’t defined

in the CSS2.1 specification, but it might be addressed in future versions.

Value

repeat The value repeat ensures that the background-image is repeated in

both directions (that is, left and right, and up and down), and along

both axes, until the element’s background is fully covered.

repeat-x The value repeat-x ensures that the background-image is repeated

only along the x axis (that is, the horizontal axis in both

directions—left and right) until the element’s background is fully

covered along that axis.

repeat-y The value repeat-y ensures that the background-image is repeated

only along the y axis (that is, the vertical axis in both directions—up

and down) until the element’s background is fully covered along that

axis.

no-repeat	 The value no-repeat ensures that the background-image is not

repeated in any direction, and that only a single instance of the image

will be placed at the coordinates specified by the

background-position.

If no background-position has been specified, the image is placed at the element’s

default left-top position (0,0).

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullBuggyBuggyFullFullFullFullFullFull

305Color and Backgrounds

Safari versions up to and including 2.0 exhibit a background-repeat bug: the image

is repeated incorrectly when no-repeat has been applied. This bug is evident when

the image’s height exceeds that of the element to which it’s applied, and when the

image is offset from the top position. In these cases, the image will repeat upwards,

filling in the area immediately above the point at which the image was initially

placed.

Internet Explorer for Windows versions up to and including 7 will only apply the

background from inside the border’s edge when the element in question has a layout

(p. 158). If the element does not have a layout, the background-color or

background-image will slide under the borders as per the specifications.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Color and Backgrounds

background-position

background-position: { { percentage | length | left

| center | right } 1 or 2 values | inherit } ;

SPEC
version initialinherited

CSS1, 2.10% 0%NO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLFULL

The background-position property

defines the initial position of a

background-image. We can repeat the

image from this position using the

background-repeat property, which

will cause the image to be repeated in

both directions along the specified

axis—see background-repeat (p. 303).

The background of an element is the

Example

This style rule places a background-image
at a position that’s 100 pixels from the left
and 200 pixels from the top of the element
with ID "example" :

#example{
 background-position: 100px 200px;
}

area covered by the width and height

of that element (whether those dimensions are set explicitly, or the content dictates

them); it also includes the area covered by padding and borders. A background-color

(or background-image) that’s applied to an element will appear beneath the

foreground content of that element, and the area covered by the padding and border

The Ultimate CSS Reference 306

properties for the element. This coverage area is evident where an element has

transparent (or dotted or dashed) borders, and the background is seen beneath

the borders (or between the dots). Note that Internet Explorer versions up to and

including 6 don’t support transparent borders.

Some area of the element must be visible so that the background-image is able to

show through. If the element has no intrinsic height (defined either by its content

or by its dimensions), there will be no space in which the background can be seen.

Similarly, if an element contains only floated children that haven’t been cleared—see

clear (p. 271)—there will be no background to show, as the element’s height will be

zero.

If no background-position has been specified, the image is placed at the default

top-left position of the element (0,0), which is located within the top-left corner of

the element, just inside the border at the outside edge of the padding box.

The tiling and positioning of the background-image on inline elements isn’t defined

in the CSS2.1 specification, but it might be addressed in future versions.

Value

This property accepts one or two length values, percentages, or keywords.

If only one value is specified for background-position, the second value is assumed

to be center. Where two values are used, and at least one is not a keyword, the first

value represents the horizontal position, and the second represents the vertical

position.

A length value (p. 29) places the top-left corner of the background-image at the

exact horizontal and vertical position specified.

Note that when the background-position is defined with a percentage value, that

position refers to both the element itself and the corresponding point on the

background-image. For example, a background-image with background-position

values of 50% 50% will place the point of the image that’s located at 50% of the

image’s width and 50% of the image’s height at a corresponding position within

the element that contains the image. In the above case, this causes the image to be

307 Color and Backgrounds

perfectly centered. This is an important point to grasp—using background-position

isn’t the same as placing an element with absolute position using percentages where

the top-left corner of the element is placed at the position specified.

background-position and background-attachment
If the background-image has been placed using a fixed background-attachment
value, the background-position refers to the viewport, rather than the element’s
padding box.

CSS2 didn’t allow us to mix keywords and length values for background-position

values. This point was amended in CSS2.1, and it’s now quite valid to specify an

image’s background-position as follows:

.example {

 background-position: 200px bottom;

}

That said, in the interests of achieving the greatest browser compatibility, it’s still

advisable to avoid mixing keywords and length values. Besides, it’s easier to use

the equivalent percentage measurement, like so:

.example {

 background-image: 200px 100%;

}

Specify the horizontal position using one of the following keywords: left, center,

or right. To set the vertical position, the following values are used: top, center,

and bottom. Unlike length units, keywords don’t have to be kept in a

horizontal–vertical order—the browser is able to determine what they refer to—but,

for the sake of clarity and consistency, it’s best to keep them in that order.

The horizontal keyword left refers to the left-hand side of the element’s padding

box (it corresponds to 0%). If only one keyword is specified, the vertical position

equates to 50% (that is, 0% 50% or left center).

Color and Backgrounds

The Ultimate CSS Reference 308

The horizontal keyword center refers to the horizontal position in the middle of

the element’s padding box (it corresponds to 50%). If only one keyword is specified,

the vertical position equates to 50% (that is, 50% 50% or center center).

The horizontal keyword right refers to the right-hand side of the element’s padding

box (corresponds to 100%). If only one keyword is specified, the vertical position

equates to 50% (that is, 100% 50% or right center).

The vertical keyword top refers to the top of the element’s padding box (it

corresponds to 0%). If only one keyword is specified, the horizontal position equates

to 50% (that is, 50% 0% or center top).

The vertical keyword center refers to the vertical position in the middle of the

element’s padding box (it corresponds to 50%). If only one keyword is specified, the

horizontal position equates to 50% (that is, 50% 50% or center center).

The vertical keyword bottom refers to the bottom of the element’s padding box (it

corresponds to 100%). If only one keyword is specified, the horizontal position

equates to 50% (that is, 50% 100% or center bottom).

The following example illustrates how the keywords refer to their equivalent

percentage values:

background-position: left top; /* same as 0% 0% */

background-position: left center; /* same as 0% 50% */

background-position: left bottom; /* same as 0% 100% */

background-position: right top; /* same as 100% 0% */

background-position: right center; /* same as 100% 50% */

background-position: right bottom; /* same as 100% 100% */

background-position: center top; /* same as 50% 0% */

background-position: center center; /* same as 50% 50% */

background-position: center bottom; /* same as 50% 100% */

Negative length and percentage values are allowed. Their effect is to shift the image’s

position outside the confines of the element it’s placed in, although, of course, none

of the negative part of the image will be visible. The image will be visible only inside

the element itself, even though its starting position may be outside the element.

309Color and Backgrounds

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullFullFull

Internet Explorer versions 6 and 7 will not base a background-position em length

value on the parent element’s font-size when that background-image is applied

to the body element. Instead, these browsers will act as if the font-size has not

been set on the html element. This issue only applies to the body element; other

elements on the page remain unaffected.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Color and Backgrounds

background-attachment

background-attachment: { scroll | fixed | inherit } ;

The background-attachment property

defines whether the background-image

scrolls with the document, or remains

fixed to the viewing area. Its default

value is scroll, which dictates that as

the document is scrolled up or down,

the image scrolls with it.

The background of an element is the

area covered by the width and height

of that element (whether those

dimensions are set explicitly, or the content dictates them); it also includes the area

covered by padding and borders. A background-color (or background-image) that’s

applied to an element will appear beneath the foreground content of that element,

and the area covered by the padding and border properties for the element. This

coverage area is evident where an element has transparent (or dotted or dashed)

borders, and the background is seen beneath the borders (or between the dots). Note

Example

This style rule sets a fixed
background-image to the element with ID
"example":

#example{
 background-attachment: fixed;
}

SPEC
version initialinherited

CSS1, 2.1scrollNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

The Ultimate CSS Reference 310

that Internet Explorer versions up to and including 6 don’t support transparent

borders.

Value

The value scroll allows the background-image to scroll along with the document.

When it’s used on an element that has a scrollbar—see overflow (p. 280)—the value

scroll ensures that the background-image doesn’t move with that element’s

scrolling mechanism, but instead scrolls with the document’s scrolling mechanism.

The value fixed stops the background-image from scrolling with its containing

block. Note that although the fixed background-image may be applied to elements

throughout the document, its background-position is always placed in relation to

the viewport. This means the background-image is only visible when its

background-position coincides with the content, padding, or border area of the

element to which it is applied. Thus, a fixed background-image doesn’t move with

elements that have a scrollbar—see overflow (p. 280)—because it’s placed in relation

to the viewport.

Previously, user agents were allowed to treat the value fixed as scroll, but this

changed in CSS2.1: if the user agent does not implement the value fixed, it should

be ignored as if it were an invalid value.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer for Windows versions up to and including 6 incorrectly implement

the value fixed for the property background-attachment and place the

background-image in relation to its containing block instead of the viewport. The

result is that fixed only really works when the background-image is applied to the

html or body elements, since they’re effectively equivalent to the viewport. When

a background-position value of fixed is applied to other elements on the page, it

will fix the image to that element, not the viewport.

311 Color and Backgrounds

Internet Explorer version 7 implemented the scroll value incorrectly in cases where

it’s used on a container that has a scroll mechanism—when overflow is set to a

value other than visible. In such cases, the background-image scrolls with the

content when it should in fact remain in view at the position specified. Internet

Explorer versions 6 and below exhibit the same behavior as IE 7 in this respect;

however, using the value fixed instead of scroll will cause IE versions 6 and below

to exhibit the behavior defined in the specifications for scroll.

Internet Explorer for Windows versions up to and including 7 will only apply the

background from inside the border’s edge when the element in question has a layout

(p. 158). If the element does not have a layout, the background-color or

background-image will slide under the borders as per the specifications.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Other Relevant Stuff
The Viewport, the Page Box, and the Canvas (p. 141)

Color and Backgrounds

The Ultimate CSS Reference 312

background

background: { background-color background-image

background-repeat background-attachment

background-position | inherit } ;

The background property is a shorthand

property that allows all the individual

background properties to be set in a

single declaration (including

background-color, background-image,

background-repeat,

background-attachment, and

background-position).

Using this shorthand property, we can

set the color of the background (the

background-color), and supply the URI of an image to be used on the background

at the same time. The remaining properties dictate how and where the image is

placed.

Example

This style rule simultaneously assigns
values to all the individual background
properties of the element with ID
"example":

#example{
 background: #fff url(image.gif)

➥ no-repeat fixed left top;
}

As with other shorthand properties, any values that aren’t specified will be set to

their defaults. This has implications if, for instance, the background-color is defined

as follows:

#example{

 background: red;

}

In the above example, all the omitted values will be set to their default states—for

background-image, the default is none. If the element already had a background

image defined, that specification would be negated, and no image would appear.

Therefore, when you’re using the shorthand property, take care to ensure that no

conflicts exist. That said, it’s common practice to use background rather than

background-color because the former property is shorter. There’s no problem in

doing this—as long as you realize the consequences.

SPEC
version initialinherited

CSS1, 2.1see belowNO
BROWSER SUPPORT

Op9.2+Saf3+FF1+IE5.5+
FULLFULLFULLBUGGY

313 Color and Backgrounds

The background of an element is the area covered by the width and height of that

element (whether those dimensions are set explicitly, or the content dictates them);

it also includes the area covered by padding and borders. A background-color (or

background-image) that’s applied to an element will appear beneath the foreground

content of that element, and the area covered by the padding and border properties

for the element. This coverage area is evident where an element has transparent

(or dotted or dashed) borders, and the background is seen beneath the borders (or

between the dots). Note that Internet Explorer versions up to and including 6 don’t

support transparent borders.

The tiling and positioning of the background-image on inline elements isn’t defined

in the CSS2.1 specification, but it might be addressed in future versions.

Value

■	 background-color sets the color of the background.

■	 background-image supplies the address of an image to be used on the background.

■	 background-repeat specifies whether a background-image is repeated (tiled)

or not, and also defines the axis along which the image will repeat.

■	 background-attachment determines whether the background-image is to scroll

with the document or remain fixed to the viewport (p. 141).

■	 background-position specifies the initial starting position of the

background-image.

Refer to the individual properties for their specific details, and the initial and

allowed values for each.

Compatibility

Color and Backgrounds

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullBuggyBuggyFullFullFullBuggyBuggyBuggy

Internet Explorer for Windows versions up to and including 6 incorrectly implement

the value fixed for the property background-attachment and place the

background-image in relation to its containing block instead of the viewport. The

The Ultimate CSS Reference 314

result is that fixed only really works when the background-image is applied to the

html or body elements, since they’re effectively equivalent to the viewport. When

a background-position value of fixed is applied to other elements on the page, it

will fix the image to that element, not the viewport.

Internet Explorer version 7 implemented the scroll value incorrectly in cases where

it’s used on a container that has a scroll mechanism—when overflow is set to a

value other than visible. In such cases, the background-image scrolls with the

content when it should in fact remain in view at the position specified. Internet

Explorer versions 6 and below exhibit the same behavior as IE 7 in this respect;

however, using the value fixed instead of scroll will cause IE versions 6 and below

to exhibit the behavior defined in the specifications for scroll.

Internet Explorer for Windows versions up to and including 7 will only apply the

background from inside the border’s edge when the element in question has a layout

(p. 158). If the element does not have a layout, the background-color or

background-image will slide under the borders as per the specifications.

Safari versions up to and including 2.0 exhibit a background-repeat bug: the image

is repeated incorrectly when no-repeat has been applied. This bug is evident when

the image’s height exceeds that of the element to which it’s applied, and when the

image is offset from the top position. In these cases, the image will repeat upwards,

filling in the area immediately above the point at which the image was initially

placed.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Other Relevant Stuff
The CSS Box Model (p. 142)

315 Color and Backgrounds

color

color: { color | inherit } ;

The color property defines the

foreground color of an element; in

essence, this means it defines the color

of the text content. If a border-color

value hasn’t been defined explicitly for

the element, the color value will be

used instead.

It’s always good practice to set a

background-color, as we set color to

ensure that conflicts don’t arise between these values and any previous declarations

or styles contained within user style sheets.

Example

This style rule sets the color red for text
within the element with ID "example" :

#example {
 color: red;
}

Value

color takes any valid CSS color value (p. 33). The initial value for this property

depends on the user agent.

Compatibility

SPEC
version initialinherited

CSS1, 2.1see belowYES
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLFULL

Color and Backgrounds

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullFullFull

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Chapter 12
Typographical Properties
Typographical properties allow the author to customize the presentation and layout

of textual content.

Typographical Properties

The Ultimate CSS Reference 318

font-family

font-family: { family name,… | inherit } ;

The property font-family sets a

prioritized list of font family names

and/or generic family names to be used

to display a given element’s text

content.

A user agent will use the first family

that’s available. Since there’s no

guarantee that any particular font will

be available, a generic family name

should always be the last value in the

list.

Note that it’s meaningless to list any

font family names after a valid generic

family name, since the latter will always

match an available font.

Example

This style rule sets the list of font families
to be used for the root element, and,
through inheritance, all elements in a given
HTML document (unless overridden). If
Helvetica isn’t available, the user agent will
try Arial. If Arial isn’t available, Luxi Sans
will be tried. If none of the font families
are available, the user agent will resort to
its default sans-serif font family:

html {
 font-family: Helvetica, Arial,

➥ "Luxi Sans", sans-serif;
}

While an element’s font-family value will be inherited if it’s not explicitly

specified, if it is specified, and none of the specified font families match an available

font (this case only arises if the list doesn’t include a generic family name), the

resulting property value will default to the user agent’s initial value (p. 39), not

the value inherited from the parent element, as you might expect.

Value

Note that the values are separated by commas, not the spaces that are used in most

other CSS properties. Comma separators are used because the values are

alternatives—at most, one of them will be used.

The values are either font family names or generic family names. Font family names

are quoted or unquoted strings, while generic family names are keywords and

shouldn’t be quoted.

SPEC
version initialinherited
CSS1, 2see belowYES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLFULL

319 Typographical Properties

It’s a good idea to quote any font family name that contains spaces or other

non-alphanumeric characters. Special characters must be escaped if the value isn’t

quoted. Whitespace characters will be ignored at the beginning or end of an unquoted

name, and multiple white space characters inside the name will collapse to a single

space.

Also, if a font family name happens to be the same as a generic family name or any

other CSS keyword, it must be quoted to avoid confusion.

Note that font family names may be case sensitive on some operating systems.

Generic family names, being CSS keywords, are always case insensitive.

CSS2.1 defines five generic family name keywords:

■ cursive (a cursive script font)

■ fantasy (a special, decorative font)

■ monospace (a monospaced font)

■ sans-serif (a sans-serif font)

■ serif (a serif font)

Those generic family names are mapped to actual font families by the user agent.

Most browsers allow the user to modify this mapping via software preferences or

options.

The initial value for this property depends on the user agent.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullFullFull

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Other Relevant Stuff
@font-face (p. 54)

Typographical Properties

The Ultimate CSS Reference 320

defines custom font properties

font-size

font-size: { absolute-size | relative-size | length

| percentage | inherit } ;

This property specifies the font size to

be applied to the text content of an

element.

Value

An absolute size (sometimes referred to

as a T-shirt size) is specified using one

of the following keywords:

■ xx-small

■ x-small

■ small

■ medium

Example

These style rules set the font size for
paragraphs to be 80% of the parent
element’s font size for screen output, and
to be ten points for print output:

@media screen {
 p {
 font-size: 80%;

 }
}
@media print {
 p {
 font-size: 10pt;

 }
}

■ large

■ x-large

■ xx-large

The exact sizes to which those keywords map aren’t defined, but each one in the

list above must be larger than or equal to the keyword that precedes it. User agents

are recommended never to map any of those keywords to a physical size that’s less

than nine pixels for screen use.

A relative size is specified using one of the following keywords:

■ smaller

■ larger

SPEC
version initialinherited
CSS1, 2mediumYES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLFULL

321 Typographical Properties

Those keywords will make the font size smaller or larger than the inherited value,

by some factor that isn’t exactly defined. Most modern browsers seem to use a factor

of 1.2, but the result may be adjusted to match a table of font sizes.

A length specified with a unit of em or ex refers to the computed font size that’s

inherited from the parent element. This also applies to percentages.

Negative length values and percentages are illegal.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullFullFull

Internet Explorer for Windows up to and including versions 5.5 use an initial value

of small, rather than medium.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

font-weight

font-weight: { 100 | 200 | 300 | 400 | 500 | 600 |

700 | 800 | 900 | bold | bolder | lighter | normal

| inherit } ;

This property sets the font weight that’s

applied to the text content of an

element.

Note that many common computer fonts

are only available in a limited number

of weights (often, the only options are

normal and bold).

Example

This style rule makes emphasized elements
display with a bolder weight than that of
their parent elements:

em {
 font-weight: bolder;
}

SPEC
version initialinherited
CSS1, 2normalYES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLFULL

Typographical Properties

The Ultimate CSS Reference 322

Value

The numeric values 100–900 specify font weights where each number represents a

weight equal to or darker than its predecessor. 400 is considered the “normal”

weight. If the specified font isn’t available in the specified weight, the font weight

will be mapped to a suitable existing value.

The following keywords can also be used for this property:

bold is a synonym for 700

bolder selects a font weight that’s darker than that inherited from the parent

element

lighter selects a font weight that’s lighter than that inherited from the parent

element

normal is a synonym for 400

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullFullFull

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

323Typographical Properties

font-style

font-style: { italic | normal | oblique | inherit } ;

This property sets the font style to be

applied for the text content of an

element.

Value

italic	 This value specifies a font

that’s labeled “italic” in the

user agent’s font database.

If such a font isn’t available,

it will use one labeled

“oblique.”

Example

This style rule makes all elements that
belong to the "ship" class render as italics:

.ship {
 font-style: italic;
}

normal	 This value specifies a font classified as “normal” in the user agent’s font

database. This is typically a Roman (upright) font for Latin characters.

oblique	 This value specifies a font labeled “oblique” in the user agent’s font

database. This may not be a true oblique font, but may be generated by

slanting a Roman font.

Compatibility

SPEC
version initialinherited
CSS1, 2normalYES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLFULL

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullFullFull

In Internet Explorer for Windows versions up to and including 7, the calculation

of widths for inline blocks is incorrect when an italic or oblique font is used. This

can cause the element to overflow, which may break float-based layouts due to the

incorrect handling of overflow in those browsers.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Typographical Properties

The Ultimate CSS Reference 324

font-variant

font-variant: { normal | small-caps | inherit } ;

font-variant sets the font variant that

SPEC
version initialinherited
CSS1, 2normalYES

BROWSER SUPPORT
Op9.2+Saf3FF1+IE5.5+
FULLNONEFULLFULL

will be used for the text content of an

element.

Small-caps fonts are fonts in which

lowercase letters appear as smaller

versions of the corresponding uppercase

letters.

Value

Example

This style rule makes h1 headings render
with small-caps:

h1 {
 font-variant: small-caps;
}

normal	 The value normal specifies a font that is not a small-caps font.

small-caps	 The value small-caps specifies a font that is a small-caps font.

CSS2.1 allows a user agent to use scaled-down versions of uppercase

letters in lieu of true small-caps lowercase letters, and even to use

ordinary uppercase letters as a replacement.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullNoneNoneNoneFullFullFullFullFullFull

In Internet Explorer for Windows versions up to and including 7, setting

font-variant to small-caps causes the values lowercase and uppercase for the

text-transform property to behave as if they were set to none. The computed

intrinsic height of an inline box will be incorrect for small-caps text if the text

consists solely of lowercase letters, and contains no whitespace or punctuation

characters.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Safari versions up to and including 3 don’t support this property.

325Typographical Properties

font

font: { [font-style] [font-variant] [font-weight]

font-size [/line-height] font-family | caption |

icon | menu | message-box | small-caption |

status-bar | inherit } ;

SPEC
version initialinherited
CSS1, 2see belowYES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLFULL

This property sets the font size and the

font family, plus, optionally, the font

style, font variant, font weight, and line

height, for an element’s text content.

Value

The font size and font family must be

specified. The font style, variant, and

weight may be specified (in arbitrary

order) before the font size. The line

height may be specified, preceded by a

slash character, between the font size

and the font family.

Any omitted value will be set to its

initial value, not its inherited value. See

the individual properties for

information on their initial values.

Example

This style rule sets some font properties
for the element with ID "sidebar":

#sidebar {
 font: bold small-caps 0.8em/1.4

➥ Helvetica, Arial,
➥ "Luxi Sans", sans-serif;

}

This style rule sets the font for the class
"dialog" to be the system font used for
dialog boxes, but changes the font size to
twice that of the parent element’s:

.dialog {
 font: message-box;
 font-size: 200%;
}

As an alternative to the aforementioned syntax, the value can be specified using

one of the special keywords for system fonts. These keywords imply all of the font

properties in one go, and can’t be combined with other property values such as a

font weight or font size, although those traits can be modified in subsequent

declarations. The keywords are:

caption selects the font used for captioned controls such as buttons

icon selects the font used to label icons

menu selects the font used in menus

Typographical Properties

The Ultimate CSS Reference 326

message-box selects the font used in dialog boxes

small-caption selects the font used for labeling small controls, or a smaller

version of the caption font

status-bar selects the font used in window status bars

Note that the system fonts can only be set with this shorthand property; not with

the font-family property.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullFullFull

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

letter-spacing

letter-spacing: { length | normal | inherit } ;

This property sets the extra spacing

between characters in the text content

of an element.

Value

A length value specifies extra space to

be inserted between characters in

addition to the default inter-character

space. This space may not be adjusted

by the user agent in order to justify text.

Example

This style rule tightens the letter spacing
in h1 headings by one pixel:

h1 {
 letter-spacing: -1px;
}

Negative length values are legal.

normal means there will be no extra space between characters. The space may be

adjusted by the user agent in order to justify text.

SPEC
version initialinherited
CSS1, 2normalYES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLFULL

327Typographical Properties

Note that normal and 0 are not fully equivalent. If the value is normal, the user agent

is allowed to adjust the letter spacing for justified text; if the value is 0, it cannot.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullFullFull

Internet Explorer for Windows versions up to and including 7 exhibit an exotic bug

whereby every other br element within an element whose letter-spacing is a

length value will be ignored.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

word-spacing

word-spacing: { length | normal | inherit } ;

The word-spacing property sets the

extra spacing between words in the text

content of an element.

SPEC
version initialinherited
CSS1, 2normalYES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE6+
BUGGYFULLBUGGYFULL

Word spacing can be affected by text

justification (see the text-align

(p. 330) property).

When whitespace is preserved—see

white-space (p. 341)—all space

characters are affected by word spacing.

Value

the default inter-word space.

Negative length values are legal.

Example

This style rule adds half an em square of
spacing between words in paragraph
elements:

p {
 word-spacing: 0.5em;
}

A length value specifies extra space to be inserted between words in addition to

Typographical Properties

The Ultimate CSS Reference 328

A value of normal means no extra space will appear between words.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

BuggyFullFullFullBuggyBuggyBuggyFullFullNone

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

In Firefox versions up to and including 2, and in Opera versions up to and including

9.2, the whitespace between inline child elements has a minimum width of zero.

line-height

line-height: { length | number | percentage | normal

| inherit } ;

SPEC
version initialinherited
CSS1, 2normalYES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1.5+IE5.5+
FULLFULLFULLBUGGY

This property sets the line height,

providing an indirect means to specify

the leading or half-leading.

The leading is the difference between

the content height and the (used) value

of line-height. Half the leading is

known as the half-leading—an old

typographic term.

Glyphs (the visual representations of a character) are centered vertically within an

inline box. If the line height is larger than the content height, half the difference—the

half-leading—is added as space at the top; the same amount is also added at the

bottom.

Example

This style rule sets the default line height
in an HTML document to 1.5:

html {
 line-height: 1.5;
}

When it’s set on a block-level element, a table cell, a table caption, or an inline block

that consists solely of inline boxes, this property specifies the minimal height of

descendant line boxes.

329Typographical Properties

When set on a non-replaced inline element, it specifies the height used to calculate

the height of the surrounding line box.

See Formatting Concepts (p. 163) for more information about block and inline

formatting.

Value

A specified length value will be the computed value for this property, and will be

used in the calculation of the final height for the line box. Negative length values

are illegal.

A number value is used as a multiplier in the calculation of the value used for this

property, which equals the specified number multiplied by the element’s computed

font size. Child elements will inherit the specified value, not the resulting used

value for this property. Negative values are illegal.

A percentage is used as a multiplier in the same way as a number value—the

computed value for the property equals the specified percentage value of the

element’s computed font size. However, child elements will inherit the computed

value for the property, not the specified percentage value. Again, negative values

are illegal.

normal is the normal line height, which depends on the user agent. In this case, it’s

the specified value, normal, rather than the resulting used value for the property,

which will be inherited by child elements.

As you can see, the way the value is specified has great implications for the

inheritance of line height by child elements. A unitless number is inherited as

specified, so the declaration line-height: 2; will make child elements

double-spaced even if their font sizes are different from the parent’s. For a length

or percentage, however, the value is first computed as an absolute value, then this

absolute value is inherited. This means that child elements will have the same

absolute line height as their parents, regardless of their font sizes.

Typographical Properties

The Ultimate CSS Reference 330

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullBuggyBuggyBuggyBuggy

Internet Explorer for Windows versions up to and including 7 will use the wrong

line height if the line box contains a replaced inline element, such as an image or

a form control. The line height will shrink-wrap to the intrinsic height of the replaced

element, and will also collapse with the half-leading of adjacent line boxes.

Firefox versions up to 1.0.0.8 do not handle number values correctly, but will use

a computed value that’s too large. This is especially noticeable on Macintosh systems.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Other Relevant Stuff
vertical-align (p. 338)

controls vertical alignment

Inline Formatting (p. 166)

text-align

text-align: { center | justify | left | right |

inherit } ;

This property specifies how the inline

content of a block is aligned, when the

sum of the widths of the inline boxes is

less than the width of the line box.

Value

The initial value is left if direction

is ltr, and right if direction is rtl.

Example

This style rule makes text in h1 headings
centered:

h1 {
 text-align: center;
}

SPEC
version initialinherited
CSS1, 2see belowYES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLBUGGY

331 Typographical Properties

center This value makes the text center justified.

justify This value makes the text left and right justified. In this case, inline

boxes may be stretched in addition to being repositioned. If white-space

is pre or pre-line, the alignment is set to the initial value.

left This value makes the text left justified.

right This value makes the text right justified.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Internet Explorer for Windows versions up to and including 7 incorrectly align

block-level boxes according to the text-align property, although it should only

affect inline boxes. The value justify behaves like center for table caption boxes.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Typographical Properties

The Ultimate CSS Reference 332

text-decoration

text-decoration: { { blink | line-through | overline

| underline } … | none | inherit } ;

This property specifies the decorations

that will be applied to the text content

of an element. These decorations are

rendered in the color specified by the

element’s color property.

The text decorations are not technically

inherited, but the effect is similar to

inheritance. If they’re set on an inline

element, they apply to all boxes

generated by that element. If they’re set

on a block-level element, the setting is

applied to an anonymous inline box that

encompasses all inline children in the

normal flow, and also to all block-level

descendants in the normal flow. The

decorations are not propagated to

floated or absolutely positioned descendants, or to descendant inline tables or inline

blocks.

Example

With the following rules applied, unvisited
anchor links are bold, but have no
underline, visited links have a line through
them, and links in the hover or focus state
have a line above and below them:

a:link {
 font-weight: bold;
 text-decoration: none;
}
a:visited {
 font-weight: bold;
 text-decoration: line-through;
}
a:hover, a:focus {
 text-decoration: underline
overline;
}

Also, text decorations on inline boxes are rendered along the entire box, even if it

contains descendant boxes. This, too, may appear similar to inheritance. Any text

decoration setting on a descendant box can never “undo” the text decorations of an

ancestor box.

Value

blink	 This value makes the text blink. (Conforming user agents are

allowed to ignore this value, since blinking content can be

detrimental to a page’s accessibility.)

line-through	 This value draws a horizontal line through the text.

SPEC
version initialinherited
CSS1, 2noneNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLBUGGYBUGGY

333Typographical Properties

none This value produces no text decoration (although it doesn’t undo

a decoration that’s set on an ancestor element).

overline This value draws a horizontal line above the text.

underline This value draws a horizontal line below the text.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullBuggyBuggyBuggyBuggyBuggyBuggy

Internet Explorer for Windows versions up to and including 7 don’t support the

blink property. Setting the value to none will remove all text decorations from an

element, even if one or more decorations are specified for its parent element. Text

decorations are propagated to floating and absolutely positioned descendants.

Internet Explorer for Windows versions up to and including 6 place the

line-through line noticeably higher above the baseline than other browsers.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Firefox versions up to and including 2 propagate text decoration values to floating

descendants.

Typographical Properties

The Ultimate CSS Reference 334

text-indent
 SPEC
version initialinherited
CSS1, 20YES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLFULLFULL

text-indent: { length | percentage | inherit } ;

This property specifies the indentation

of the first line of text in a block.

Whether the text is indented from the

left or from the right depends on the

element’s direction (p. 343) property.

Whereas margins and padding affect the

whole block, text-indent only applies

to the first rendered line of text in the

element.

Example

These rules style paragraphs in a way that’s
common in novels—there’s no vertical
space between the paragraphs, and each
paragraph except the first is indented 1.5
em squares:

p {
 margin: 0;
 text-indent: 1.5em;
}
p:first-child {
 text-indent: 0;
}

Using text-indent to Hide Text
Setting text-indent to a large negative value is a technique commonly used to
“hide” short texts—such as structural headings—in visual browsers without hiding
them from screen readers (as is the case with display:none). For example, a
text-indent value of -9999px is high enough to push the text far off the
screen—even for large viewport sizes.

Value

Negative values are legal.

A length specifies an indentation of a fixed length.

A percentage specifies an indentation that’s a percentage of the containing block’s

(p. 147) width.

335Typographical Properties

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullFullFull

Internet Explorer for Windows versions up to and including 5.5 will indent text in

inline elements that have been assigned a width value other than auto.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Opera browsers will ignore “extreme” values. So, when you’re using text-indent

to hide text, don’t go beyond -999em or -9999px.

Other Relevant Stuff
direction (p. 343)

specifies the writing direction

text-transform

text-transform: { capitalize | lowercase | none |

uppercase | inherit } ;

This property controls if and how an

element’s text content is capitalized.

Value

capitalize	 transforms the first

character in each word

to uppercase; all other

characters remain

Example

These style rules make h1 headings use
only uppercase letters, while the first letter
of each word in h2 headings will be
uppercased:

h1 {
 text-transform: uppercase;
}
h2 {
 text-transform: capitalize;
}

SPEC
version initialinherited
CSS1, 2noneYES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLBUGGY

Typographical Properties

The Ultimate CSS Reference 336

unaffected—they’re not transformed to lowercase, but will appear

as written in the document

lowercase transforms all characters to lowercase

none produces no capitalization effect at all

uppercase transforms all characters to uppercase

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullBuggyBuggyBuggy

Note that the concept of what constitutes a word depends on the language in which

the content is presented, and differs between browsers. Opera and Firefox will

capitalize text-transform as Text-transform, while Internet Explorer for Windows

will capitalize it as Text-Transform.

In Internet Explorer for Windows versions up to and including 7, the values

lowercase and uppercase behave like none if the font-variant property is set to

small-caps.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

337Typographical Properties

text-shadow

text-shadow: { shadow,… | none | inherit } ;

The property specifies one or more text

shadow effects to be added to the text

content of an element. text-shadowwas

originally specified in CSS2 but

removed from CSS2.1 due to the lack of

implementation among browsers. It’s

currently also included in the CSS3

Text module.

Shadow effects are applied in the order

Example

This rule specifies a text shadow effect
that’s black, extends 2px to the right of and
below the text, and has a 2px blur:

.title {
 text-shadow: 2px 2px 2px #000;
}

SPEC
version initialinherited
CSS2, 3noneNO

BROWSER SUPPORT
Op9.2Saf1.3+FF2IE7
NONEPARTIAL NONENONE

in which they are specified. They don’t

increase the size of a box, though they can extend past its boundaries, and their

stack order is the same as the element itself.

text-shadow is inherited in CSS3.

Value

Each shadow value must specify a shadow offset and, optionally, a blur radius and

color.

The offset is specified using two length values; the first value represents the

horizontal distance to the right of the text (if it’s positive), or to the left of the text

(if the value’s negative); the second value represents the vertical distance below the

text (if it’s positive) or above the text (if it’s negative).

The blur radius is specified after the offset values; it’s a length value that represents

the size of the blur effect. If no radius is specified, the shadow will not be blurred.

The color can be specified before or after the offset and blur radius values. According

to CSS2, if no color value is specified, the shadow will use the value of the color

property instead. However, in CSS3 the specification states that the user agent

determines the shadow color in the absence of a specified value.

Typographical Properties

The Ultimate CSS Reference 338

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NonePartial Partial Partial NoneNoneNoneNoneNoneNone

This property is currently only supported by Safari up to and including version 3

and Opera 9.5 beta. However, Safari doesn’t support multiple shadows.

vertical-align

vertical-align: { length | percentage | baseline |

bottom | middle | sub | super | text-bottom |

text-top | top | inherit } ;

This property controls the vertical

alignment of inline boxes within a line

box, or of table cells within a row.

Value

The following values apply to inline

boxes:

■	 A length value raises or lowers

(depending on its sign) the box by the specified distance.

Example

This style rule makes images within table
cells align to the bottom of the cell, to
eliminate the gap that otherwise occurs:

td img {
 vertical-align: bottom;
}

■	 A percentage value raises or lowers (depending on its sign) the box by the distance

specified as the percentage applied to the element’s line-height.

■ The following keyword values can be specified for inline boxes:

baseline	 aligns the baseline of the box with the baseline of the parent

box; if the box doesn’t have a baseline (for instance, an image)

the bottom margin edge is aligned with the parent’s baseline

SPEC
version initialinherited
CSS1, 2baselineNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLFULLBUGGYBUGGY

339Typographical Properties

bottom aligns the bottom of the aligned subtree with the bottom of the

line box1

middle aligns the vertical midpoint of the box with a point that’s half

the parent’s x-height above the baseline of the parent box

sub lowers the baseline of the box to a position suitable for subscripts

of the parent’s box

super raises the baseline of the box to a position suitable for

superscripts of the parent’s box

text-bottom aligns the bottom of the box with the bottom of the parent

element’s font

text-top aligns the top of the box with the top of the parent element’s

font

top aligns the top of the aligned subtree with the top of the line box

For inline blocks, the baseline is the baseline of the last line box in the normal flow.

If there isn’t one, the element’s bottom margin edge is used.

The baseline of an inline table is the baseline of the first row of the table.

The following values apply to table cells:

baseline aligns the baseline of the cell with the baseline of the first of the rows

it spans

bottom aligns the bottom of the cell box with the bottom of the last row it spans

middle aligns the center of the cell with the center of the rows it spans

top aligns the top of the cell box with the top of the first row it spans

1	 An aligned subtree includes the element and the aligned subtrees of all child elements, except
those whose vertical-align value is top or bottom.

Typographical Properties

The Ultimate CSS Reference 340

Any other value, including lengths and percentages, won’t apply to cells. The

computed vertical alignment will be baseline.

The baseline of a table cell is the baseline of the first line box in the cell. If there is

none, the bottom of the cell box is used.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullBuggyBuggyBuggyBuggyBuggyBuggy

In Internet Explorer for Windows versions up to and including 7, some elements

behave as if the declaration vertical-align: inherit; was in the user agent style

sheet. The values bottom and top are treated like text-bottom and text-top,

respectively. Length values, percentages, and the values sub, super, text-bottom,

and text-top don’t compute to baseline for table cells.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

In Firefox up to and including version 2, some elements behave as if the declaration

vertical-align: inherit; was in the user agent style sheet.

As an example, in both Firefox and Internet Explorer for Windows, a vertical-align

value specified for a table row will be applied to all the cells in that row. This is

incorrect, because vertical-align doesn’t apply to table rows, and isn’t inherited,

so such a setting should have no effect.

Other Relevant Stuff
line-height (p. 328)

sets the line height

Inline Formatting (p. 166)

Table Formatting (p. 168)

341 Typographical Properties

white-space

white-space: { normal | nowrap | pre | pre-line |

pre-wrap | inherit } ;

This property controls the handling of

whitespace inside an element.

Whitespace is a collective name for one

or more occurrences of the characters

space, tab, line feed, carriage return, and

form feed. Typically, within an HTML

element, user agents will collapse a

sequence of whitespace characters into

a single space character.

Note that this property only handles whitespace characters; a common beginner’s

mistake is to try to use it to prevent floated elements from dropping down if there

isn’t enough room on a line.

Example

This style rule makes elements that belong
to the "poetry" class retain and render all
whitespace in the document markup:

.poetry {
 white-space: pre;
}

Value

normal	 A value of normal dictates that sequences of whitespace will collapse

into a single space character. Line breaks will occur wherever necessary

to fill line boxes.

nowrap	 Specifying nowrap ensures that sequences of whitespace will collapse

into a single space character, but line breaks will be suppressed.

pre	 Specifying pre ensures that sequences of whitespace won’t collapse.

Lines are only broken at new lines in the markup (or at occurrences of

"\a" in generated content).

pre-line	 This value will cause sequences of whitespace to collapse into a single

space character. Line breaks will occur wherever necessary to fill line

boxes, and at new lines in the markup (or at occurrences of "\a" in

generated content). In other words, it’s like normal except that it’ll

honor explicit line breaks.

SPEC
version initialinherited
CSS1, 2normalYES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
PARTIAL FULLPARTIAL PARTIAL

Typographical Properties

The Ultimate CSS Reference 342

pre-wrap	 Specify pre-wrap to ensure that sequences of whitespace won’t collapse.

Line breaks will occur wherever necessary to fill line boxes, and at

new lines in the markup (or at occurrences of "\a" in generated

content). In other words, it’s like pre except that it’ll wrap the text at

the end of line boxes.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

Partial FullFullFullPartial Partial Partial Partial Partial Partial

Internet Explorer for Windows versions up to and including 7 don’t support the

values pre-line or pre-wrap. The values normal and pre behave like pre-wrap on

textarea elements. The value nowrap behaves like pre-line on textarea elements.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Firefox versions up to and including 2 don’t support the values pre-line and

pre-wrap (although -moz-pre-wrap is similar to the latter). The values normal,

nowrap, and pre behave like pre-wrap on textarea elements.

Opera 9.2 and prior versions don’t support the value pre-line. The values normal

and pre behave like pre-wrap on textarea elements. The value nowrap behaves

like pre-line on textarea elements.

343Typographical Properties

direction

direction: { ltr | rtl | inherit } ;

This property specifies the following:

■ the base writing direction of blocks

■	 the direction of embeddings and

overrides—see unicode-bidi

(p. 344)—for the Unicode

bidirectional algorithm

■ the direction of table column layout

■ the direction of horizontal overflow

■	 the position of an incomplete last

line in a block, when the text-align property has the value justify

Example

This style rule causes the columns in tables
belonging to the "arabic" class to be laid
out from right to left:

table.arabic {
 direction: rtl;
}

For the direction property to affect content reordering in inline elements, the

unicode-bidi property must be set to embed or override.

The CSS2.1 specification2 emphasizes that this property should normally be used

only by DTD designers. In particular, authors, web designers, and users shouldn’t

override it.

Value

ltr sets a left-to-right direction

rtl sets a right-to-left direction

Compatibility

SPEC
version initialinherited
CSS2ltrYES

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+

FULLFULLFULLFULL

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullFullFullFullFullFullFullFullFullFull

Typographical Properties

2 http://www.w3.org/TR/REC-CSS2/visuren.html#direction

http://www.w3.org/TR/REC-CSS2/visuren.html#direction

Other Relevant Stuff
unicode-bidi (p. 344)

controls embeddings and overrides for the Unicode bidirectional algorithm

The Ultimate CSS Reference 344

unicode-bidi

unicode-bidi: { bidi-override | embed | normal |

inherit } ;

Along with direction (p. 343), this

property relates to the handling of

bidirectional text within a given

document. If a paragraph contains both

left-to-right text and right-to-left text,

the user agent applies a complex

algorithm defined by the Unicode

standard3 to determine how the text

should appear. This property

specifically controls the embedding

levels and overrides for the Unicode

bidirectional algorithm.

Example

This style rule creates a new embedding
level with a right-to-left writing direction
for bible-quote elements (assumed to be
in Hebrew) in an XML document:

bible-quote {
 direction: rtl;
 unicode-bidi: embed;
}

The CSS2.1 specification4 emphasizes that this property should normally be used

only by DTD designers. In particular, authors, web designers, and users shouldn’t

override it.

Value

bidi-override This value creates an override for inline elements. For block-level

elements, table cells, table captions, or inline blocks, it creates

an override for (some) inline-level descendants. In other words,

the implicit part of the bidirectional algorithm is ignored and

3 http://www.unicode.org/reports/tr9/

4 http://www.w3.org/TR/REC-CSS2/visuren.html#direction

SPEC
version initialinherited
CSS2normalNO

BROWSER SUPPORT
Op9.2+Saf3FF1+IE5.5+
FULLNONEFULLBUGGY

http://www.unicode.org/reports/tr9/
http://www.unicode.org/reports/tr9/
http://www.w3.org/TR/REC-CSS2/visuren.html#direction

345Typographical Properties

the value of the direction property is used for reordering

content within the element.

embed This value offers an additional level of embedding for inline

elements. The direction of the embedding level is determined

by the direction property.

normal This value doesn’t offer an additional level of embedding with

respect to the bidirectional algorithm. For inline elements,

implicit reordering works across element boundaries.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullNoneNoneNoneFullFullFullBuggyBuggyBuggy

Internet Explorer for Windows versions up to and including 7 have some serious

bugs relating to floated elements used in combination with the declarations

direction: rtl; and unicode-bidi: embed;.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Safari versions up to and including 3 don’t support this property.

Other Relevant Stuff
direction (p. 343)

specifies the writing direction

Typographical Properties

Chapter 13
G

enerated Content

Generated Content

These properties allow the author to insert generated content into a document. More

specifically, it allows the control and presentation of extra content, counters, and

quote characters through the use of the :before and :after pseudo-elements.

The Ultimate CSS Reference 348

content

content: { { string | uri | counter |

attr(identifier) | open-quote | close-quote |

no-open-quote | no-close-quote } … | normal | none

| inherit } ;

The content property, used in

conjunction with the :before (p. 113)

or :after (p. 114) pseudo-elements,

inserts generated content.

Use the display property to control the

type of box that’s generated for the

content.

Note that the generated content is only

rendered—it doesn’t appear in the DOM

tree. In other words, generated content doesn’t alter the document as such—only

the presentation.

Example

This style rule inserts the text “You are
here:” before the element with the ID
"breadcrumbs":

#breadcrumbs:before {
 content: "You are here:";
 margin-right: 0.5em;
}

That said, generated content is still matched by pseudo-elements like :first-letter

(p. 107) and :first-line (p. 110).

Here are some additional examples that demonstrate more advanced usage of

generated content, including the use of the counter-increment (p. 352) and

counter-reset (p. 354) properties.

This style rule adds the URI, enclosed in angle brackets, after links when the

document’s printed to paper:

@media print {

 a[href]:after {

 content: "<" attr(href) ">";

 }

}

These CSS3 style rules format paragraphs within a block quotation in the way that’s

common in (American) English novels:

SPEC
version initialinherited

CSS2, 2.1normalNO
BROWSER SUPPORT

Op9.2+Saf1.3+FF1.5+IE7
PARTIAL PARTIAL PARTIAL NONE

349Generated Content

blockquote p {

 margin: 0;

 text-indent: 1em;

 quotes: "\201c" "\201d";

}

blockquote p:first-of-type {

 text-indent: 0;

}

blockquote p::before {

 content: open-quote;

}

blockquote p::after {

 content: no-close-quote;

}

blockquote p:last-of-type::after {

 content: close-quote;

}

These style rules add the word “Chapter” and a chapter number before every h1

heading, and prefix every h2 heading with the chapter number and a section number:

body {

 counter-reset: chapter;

}

h1 {

 counter-increment: chapter;

 counter-reset: section;

}

h2 {

 counter-increment: section;

}

h1:before {

 content: "Chapter " counter(chapter) ": ";

}

h2:before {

 content: counter(chapter) "." counter(section) " ";

}

These style rules apply a hierarchical numbering system to items in ordered lists

(for example, 1, 1.1, 1.1.1 … and so on):

ol {

 counter-reset: item;

 margin: 0;

 padding: 0;

}

G
enerated Content

The Ultimate CSS Reference 350

ol>li {

 counter-increment: item;

 list-style: none inside;

}

ol>li:before {

 content: counters(item, ".") " - ";

}

Value

The value of content is either the keyword none, the keyword normal, the keyword

inherit, or one or more content specifications (strings, URIs, counters, or quote

characters) separated by whitespace.

Using the value normal, we can reset or clear a previously specified content

declaration. From an authoring standpoint, there’s no real difference between the

values normal and none, except that there’s currently no browser support for none.

According to the CSS2.1 specification,1 if none is specified, the pseudo-element

isn’t generated, and if normal is specified for the :before (p. 113) or :after (p. 114)

pseudo-elements, it acts like none. Furthermore, if content is specified for other

element types, the computed value should aways be normal. However, these kinds

of details are targeted towards browser makers rather than CSS authors, so you

shouldn’t worry if they’re confusing.

A string value inserts the specified string. If you want a newline character in the

generated content, you can use the \a escape, but the generated content is subject

to the white-space property, so you’ll need to modify its value for the newline to

be rendered as such.

A URI value inserts content read from the specified external resource. The Changes

section in the CSS2.1 specification says that this value type has been dropped, but

it’s still listed in the normative section for the content property.2

A counter value inserts the current value(s) of the specified counter(s). It can be

expressed using two different functional notations, both of which have two forms.

The counter(name) notation inserts the current value of the counter with the specified

1 http://www.w3.org/TR/CSS21/generate.html#content

2 http://www.w3.org/TR/CSS21/generate.html#propdef-content

http://www.w3.org/TR/CSS21/generate.html#content
http://www.w3.org/TR/CSS21/generate.html#propdef-content

name. The counters(name,separator) notation inserts the values of all counters

with the specified name, separated by the specified separator string. Both notations

also take an optional list style argument (decimal by default) as the last argument,

to control the style of the output—for example, counter(item, upper-roman). The

keywords available for the list style argument match those available for the

list-style-type (p. 286) property.

See counter-reset (p. 354) and counter-increment (p. 352) for details about

counters.

The identifier notation inserts the value of the attribute whose name is specified

by the identifier. Note that the argument is an identifier (p. 43); it shouldn’t be

enclosed in quotes.

G
enerated Content

351 Generated Content

The open-quote and close-quote values insert the corresponding quotation mark

specified in the quotes (p. 355) property. These values also increment or decrement

the nesting level for quotes.

The no-open-quote and no-close-quote values don’t insert any content, but they’ll

increment or decrement the nesting level for quotes.

See quotes (p. 355) for details about quotes.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

Partial Partial Partial Partial Partial Partial NoneNoneNoneNone

Internet Explorer for Windows versions up to and including 7 don’t support

generated content at all.

Firefox versions up to and including 2, and Opera versions up to and including 9.2

don’t support the value none. Safari versions up to and including 3 don’t support

the values none or normal. An empty string can be used instead to reset a previous

declaration.

In Opera, up to and including version 9.2:

The Ultimate CSS Reference 352

■	 Counters used without a counter-reset have global scope instead of the scope

of the elements for which they are used.

■	 When the quote nesting level isn’t within the number of pairs defined for the

quotes property, open-quote inserts the last-defined close quote character, while

close-quote inserts the default close quote character.

Opera and Safari 3 (partially) also support content in contexts other than the

:before and :after pseudo-elements. In these cases, the content of the element is

replaced by the value of the content property.

Other Relevant Stuff
:before (p. 113)

specifies content to be inserted before another element

:after (p. 114)

specifies content to be inserted after another element

counter-increment

counter-increment: { identifier [integer]1 or more pairs

| none | inherit } …;

This property increments one or more

counter values.

A counter is identified by a name that’s

normally established by using the

counter in the counter-reset (p. 354)

property. Counters can be nested: if an

element has the counter C, and a child

element resets that counter name, it

won’t reset the parent’s counter, but

instead will create a new, nested

counter, C.

Example

These style rules prepend a number to all
h2 headings, incrementing the value for
each heading:

h1 {
 counter-reset: section;
}
h2:before {
 counter-increment: section;
 content: counter(section) ". ";
}

SPEC
version initialinherited
CSS2noneNO

BROWSER SUPPORT
Op9.2+Saf3FF1+IE7
BUGGYNONEFULLNONE

353Generated Content

Value

The value none indicates that no counters will be incremented.

If one or more identifiers are specified, each named counter will be incremented.

If an integer value is specified after the identifier, the counter value is incremented

by that amount. The default increment is 1; zero, or negative values, are allowed.

If an identifier refers to a counter that hasn’t been initialized by counter-reset,

the default initial value is 0.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

BuggyNoneNoneNoneFullFullFullNoneNoneNone

G
enerated Content

Internet Explorer for Windows versions up to and including 7 don’t support

generated content or counters.

Safari versions up to and including 3 don’t support this property.

In Opera versions up to and including 9.2, counters used without a counter-reset

property have global scope, instead of the scope of the elements for which they’re

used.

Other Relevant Stuff
content (p. 348)

inserts content before or after an element

The Ultimate CSS Reference 354

counter-reset

counter-reset: { identifier [integer]1 or more pairs |

none | inherit } …;

This property creates or resets one or

more counters. The created counters

have a scope: the element for which the

counter is created, its following siblings,

and all descendants of the element and

its following siblings.

The counter-reset property is usually

used in conjunction with

counter-increment (p. 352) to handle

automatic numbering, and with

content (p. 348) to display the generated

counter values.

Value

The value none ensures that no counters

will be reset.

If one or more identifiers are specified,

each named counter will be reset. If an

integer value is specified after the identifier, the counter is reset to that value. The

default reset value is 0.

Example

These style rules assign a two-level
numbering system for tables. One counter
is incremented for body row groups, and
the other for each row. The value in the
first cell in each row is prepended with the
two counters, such as A.1, A.2, A.3, and so
on.

table {
 counter-reset: group;
}
tbody {
 counter-increment: group;
 counter-reset: row;
}
tbody tr {
 counter-increment: row;
}
tbody td:first-child:before {
 content: counter(group,
upper-latin) "." counter(row);
}

Compatibility

SPEC
version initialinherited
CSS2noneNO

BROWSER SUPPORT
Op9.2+Saf3FF1+IE7
FULLNONEFULLNONE

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullNoneNoneNoneFullFullFullNoneNoneNone

Internet Explorer for Windows versions up to and including 7 don’t support

generated content or counters.

Safari versions up to and including 3 don’t support this property.

In Opera, counters used without a counter-reset have global scope, instead of the

scope of the elements for which they’re used.

Other Relevant Stuff
content (p. 348)

inserts content before or after an element

SPEC
version initialinherited
CSS2see belowYES

BROWSER SUPPORT
Op9.2+Saf3FF1+IE7
BUGGYNONEFULLNONE

quotes
quotes: { string string1 or more pairs | none |

inherit } …;

G
enerated Content

355Generated Content

This property specifies the quote

characters to use for generated content.

The quote characters specified for this

property are those used for the

open-quote and close-quote values of

the content property.

Quotes can be specified for a number of

nesting levels. Each use of open-quote

or no-open-quote increments the

nesting level, while each use of

close-quote or no-close-quote

decrements the nesting level.

Note that the nesting level has nothing

to do with the markup; it’s only the use

of the aforementioned content values

that affect the nesting level.

Example

These style rules define the traditional
sequence of quote characters for q elements
in American and British English.

For American English, quotes are normally
surrounded by double quotation marks,
while nested quotes use single quotation
marks. For British English, it’s the other
way around.

:lang(en-us)>q {
 quotes: "\201c" "\201d" "\2018"
"\2019";
}
:lang(en-gb)>q {
quotes: "\2018" "\2019" "\201c"
"\201d";
}

The Ultimate CSS Reference 356

Value

If specified as none, the values open-quote and close-quote won’t insert any quote

character when they’re used with the content property.

If the values are specified as string pairs, each pair represents a nesting level. The

first pair is used for the outermost quotation level, the second pair for the first

embedded quote, and so on through nesting levels. The first string in each pair is

the open quote, and the second string is the close quote.

The initial value for this property depends on the user agent.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

BuggyNoneNoneNoneFullFullFullNoneNoneNone

Internet Explorer for Windows versions up to and including 7 don’t support

generated quotes.

Safari versions up to and including 3 don’t support this property.

In Opera versions up to and including 9.2, when the quote nesting level isn’t

represented by the number of pairs defined for the quotes property, open-quote

inserts the last defined close quote character, while close-quote inserts the default

close quote character.

Other Relevant Stuff
content (p. 348)

inserts content before or after an element

Chapter 14
User Interface Properties
User interface properties allow the author to control the presentation of the user

interface elements of user agents.

U
ser Interface Properties

The Ultimate CSS Reference 358

cursor

0 or more times
cursor: { [uri], { auto | crosshair |

default | e-resize | help | move | n-resize |

ne-resize | nw-resize | pointer | progress | s-resize

| se-resize | sw-resize | text | w-resize | wait }

| inherit } ;

SPEC
version initialinherited

CSS2, 2.1autoYES
BROWSER SUPPORT

Op9.2+Saf1.3+FF1+IE5.5+
PARTIAL PARTIAL FULLBUGGY

This property sets the type of cursor to

be displayed for a pointing device.

Value

We can specify a comma-separated list

of URI values from which we want CSS

to retrieve the cursor. And in a similar

way to the method by which a list of

Example

This style rule sets the cursor to take the
appearance of the text cursor for the
element whose ID is"current":

#current {
 cursor: text;
}

font family names is used, the browser

will use the first URI it successfully retrieves. Note that you must also specify a

fallback cursor-type keyword.

Descriptions for all the valid cursor keywords are provided here:

auto the browser’s default cursor in the current context

crosshair a crosshair cursor

default the default cursor for the platform, without regard for the context

e-resize a cursor that indicates that a right-hand (“east”) edge will be moved

help a cursor that indicates that help is available for the object under the

cursor

move a cursor that indicates that something will be moved

n-resize a cursor that indicates that a top (“north”) edge will be moved

359User Interface Properties

ne-resize	 a cursor that indicates that top (“north”) and right-hand (“east”) edges

will be moved

nw-resize	 a cursor that indicates that top (“north”) and left-hand (“west”) edges

will be moved

pointer	 a cursor that indicates a link (commonly a hand with an extended

index finger)

progress	 a cursor that indicates progress: the application is busy doing

something, but the user can still interact with it

s-resize	 a cursor that indicates that a bottom (“south”) edge will be moved

se-resize	 a cursor that indicates that bottom (“south”) and right-hand (“east”)

edges will be moved

sw-resize	 a cursor that indicates that bottom (“south”) and left-hand (“west”)

edges will be moved

text	 a cursor that indicates that text may be selected (commonly an I-beam)

w-resize	 a cursor that indicates that a left-hand (“west”) edge will be moved

wait	 a cursor that indicates that the application is busy and that the user

should wait (commonly an hourglass)

Compatibility

U
ser Interface Properties

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

Partial Partial Partial Partial FullFullFullBuggyBuggyBuggy

Internet Explorer for Windows versions up to and including 5.5 don’t support the

pointer value; instead, they use the non-standard value hand.

In Internet Explorer for Windows up to and including version 7, if a relative URI

value is specified in an external style sheet file the base URI is considered to be the

URI of the document containing the element and not the URI of the style sheet in

which the declaration appears.

The Ultimate CSS Reference 360

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Opera versions up to and including 9.2 don’t support URI values.

Safari versions up to and including 3 don’t support URI values.

Chapter 15
Paged Media Properties
Paged media properties allow the author to control the presentation of content when

displayed on paged media like print, as opposed to continuous media like a computer

screen.

Paged M
edia Properties

The Ultimate CSS Reference 362

page-break-before

page-break-before: { always | auto | avoid | left |

right | inherit } ;

This property specifies whether a page

break may, must, or shouldn’t occur

before a block-level element’s generated

box.

Value

always	 forces a page break before the

box

auto allows a page break before the box, but doesn’t require it

Example

This style rule makes every h2 element start
at the top of a new page:

h2 {
 page-break-before: always;
}

avoid	 tells the user agent to avoid inserting a page break before the box, if at all

possible

left	 forces one or two page breaks before the box, so that the next page will

be a left-hand page

right	 forces one or two page breaks before the box, so that the next page will

be a right-hand page

Compatibility

SPEC
version initialinherited
CSS2autoNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLPARTIAL PARTIAL PARTIAL

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullPartial Partial Partial Partial Partial Partial Partial Partial Partial

Internet Explorer for Windows versions up to and including 7 do not support the

values left and right; either value is interpreted as the value always.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Firefox versions up to and including 2 don’t support the avoid, left, or right

values.

363Paged Media Properties

Safari versions up to and including 3 don’t support the avoid, left, or right values.

page-break-inside

page-break-inside: { auto | avoid | inherit } ;

This property specifies whether a page

break may or shouldn’t occur inside a

block-level element’s generated box.

Value

auto	 allows a page break inside the

box

avoid	 tells the user agent to avoid

inserting a page break inside

the box, if at all possible

Example

This style rule tells the user agent to avoid
splitting unordered lists over two pages:

ul {
 page-break-inside: avoid;
}

Compatibility

SPEC
version initialinherited
CSS2autoYES

BROWSER SUPPORT
Op9.2+Saf3FF2IE7

FULLNONENONENONE

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullNoneNoneNoneNoneNoneNoneNoneNoneNone

Internet Explorer for Windows versions up to and including 7 don’t support this

property.

Firefox versions up to and including 2 don’t support this property.

Safari versions up to and including 3 don’t support this property.

Paged M
edia Properties

The Ultimate CSS Reference 364

page-break-after

page-break-after: { always | auto | avoid | left |

right | inherit } ;

This property specifies whether a page

break may, must, or shouldn’t occur

after a block-level element’s generated

box.

Value

always	 forces a page break after the

box

auto allows a page break after the box, but doesn’t require it

Example

This style rule ensures that an h3 element
never ends up at the bottom of a page:

h3 {
 page-break-after: avoid;
}

avoid	 tells the user agent to avoid inserting a page break after the box, if at all

possible

left	 forces one or two page breaks after the box, so that the next page will be

a left-hand page

right	 forces one or two page breaks after the box, so that the next page will be

a right-hand page

Compatibility

SPEC
version initialinherited
CSS2autoNO

BROWSER SUPPORT
Op9.2+Saf1.3+FF1+IE5.5+
FULLPARTIAL PARTIAL PARTIAL

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullPartial Partial Partial Partial Partial Partial Partial Partial Partial

Internet Explorer for Windows versions up to and including 7 do not support the

values left and right; either value is interpreted as the value always.

Internet Explorer for Windows versions up to and including 7 don’t support the

value inherit.

Firefox versions up to and including 2 don’t support the avoid, left, or right

values.

365Paged Media Properties

Safari versions up to and including 3 don’t support the avoid, left, or right values.

orphans

orphans: { integer | inherit } ;

Orphans are the lines of text that remain

on the previous page when an element

is split over two pages. It’s usually

undesirable to display only the first line

of a paragraph at the bottom of a page.

This property allows the designer to

specify the minimum number of lines

that must display at the bottom of a

page.

Value

Example

This style rule ensures that at least three
lines of text display at the bottom of the
page when a page break occurs inside a
paragraph:

p {
 orphans: 3;
}

An integer value specifies the minimum number of lines that must display at the

bottom of a page when a page break occurs inside an element.

Negative values are illegal.

Compatibility

SPEC
version initialinherited
CSS22YES

BROWSER SUPPORT
Op9.2+Saf3FF2IE7

FULLNONENONENONE

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullNoneNoneNoneNoneNoneNoneNoneNoneNone

Internet Explorer for Windows versions up to and including 7 don’t support this

property.

Firefox versions up to and including 2 don’t support this property.

Safari versions up to and including 3 don’t support this property.

Paged M
edia Properties

The Ultimate CSS Reference 366

widows

widows: { integer | inherit } ;

Widows are the lines of text that are

shifted to the next page when an

element is split over two pages. It’s

usually undesirable to display only the

last line of a paragraph at the top of a

page. This property allows the designer

to specify the minimum number of lines

that must display at the top of a page.

Value

Example

This style rule ensures that at least three
lines of text display at the top of the second
page when a page break occurs inside a
paragraph:

p {
 widows: 3;
}

An integer value specifies the minimum

number of lines that must display at the top of a page when a page break occurs

inside an element.

Negative values are illegal.

Compatibility

SPEC
version initialinherited
CSS22YES

BROWSER SUPPORT
Op9.2+Saf3FF2IE7
FULLNONENONENONE

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

FullNoneNoneNoneNoneNoneNoneNoneNoneNone

Internet Explorer for Windows versions up to and including 7 don’t support this

property.

Firefox versions up to and including 2 don’t support this property.

Safari versions up to and including 3 don’t support this property.

Chapter 16
Vendor-specific Properties

Vendor-specific Properties
Vendors—browser makers—are free to implement extensions to the CSS

specifications that, in most cases, are proprietary to their browser. They may do

this for a number of reasons, such as adding new features for users, or for experiments

and debugging. Most often, though, the extensions are used to release and test

browser features that have been developed in the preparation of W3C drafts that

have not yet reached Candidate Recommendation status—the extensions allow these

new properties to be widely tested before they become available as standard CSS

properties.

In order to accommodate the release of vendor-specific extensions, the CSS

specifications1 define a specific format that vendors should follow.

The format is quite simple: keywords and property names beginning with - (dash)

or _ (underscore) are reserved for vendor-specific extensions. As such, vendors

should use the following formats:

1 http://www.w3.org/TR/CSS21/syndata.html#vendor-keywords

http://www.w3.org/TR/CSS21/syndata.html#vendor-keywords
http://www.w3.org/TR/CSS21/syndata.html#vendor-keywords

The Ultimate CSS Reference 368

'-' + vendor specific identifier + '-' + meaningful name

'_' + vendor specific identifier + '-' + meaningful name

This approach allows any vendor-specific extension to coexist with any future (or

current) CSS properties without causing conflicts because, according to the W3C

specifications, a CSS property name will never begin with a dash or an underscore:

“An initial dash or underscore is guaranteed never to be used in a property or

keyword by any current or future level of CSS. Thus, typical CSS implementations

may not recognize such properties, and may ignore them according to the rules for

handling parsing errors. However, because the initial dash or underscore is part of

the grammar, CSS2.1 implementers should always be able to use a CSS-conforming

parser, whether or not they support any vendor-specific extensions.”2

A number of extensions are known to exist. Their prefixes are outlined in Table

16.1.

Table 16.1: Vendor Extension Prefixes

Organisation Prefix

Microsoft -ms-

Microsoft Office mso-

Mozilla Foundation (Gecko-based browsers)4 -moz-

Opera Software -o-

Advanced Television Standards Committee -atsc-

The WAP Forum -wap-

Safari (and other WebKit-based browsers)5-webkit

2 http://www.w3.org/TR/CSS21/syndata.html#vendor-keywords
4 http://en.wikipedia.org/wiki/Gecko_(layout_engine)
5 http://trac.webkit.org/projects/webkit/wiki/Applications%20using%20WebKit

http://en.wikipedia.org/wiki/Gecko_(layout_engine)
http://trac.webkit.org/projects/webkit/wiki/Applications%20using%20WebKit
http://www.w3.org/TR/CSS21/syndata.html#vendor-keywords

Organisation Prefix

Konqueror browser -khtml-

Use these Extensions with Care!
Even though vendor-specific extensions are guaranteed not to cause conflicts (unless
two vendors happen to choose the same identifier, of course), it should be recognized
that these extensions may also be subject to change at the vendor’s whim, as they
don’t form part of the CSS specifications, even though they often mimic the proposed
behavior of existing or forthcoming CSS properties.

Although these extensions can be useful at times, it’s still recommended that you
avoid using them unless it’s absolutely necessary. It’s also worth noting that, as is
usually the case with proprietary code, the extensions will not pass CSS validation.

Vendor-specific Properties
369Vendor-specific Properties

If you must use extensions, you should use those that are closely related to equivalent

CSS properties (be that CSS1, 2, or 3), so that you can switch to the standard property

later on, and remove the extension when the browser implements the correct

specification.

Bearing this in mind, let’s go back a few years and take as an example the opacity

property, which is part of CSS3 (Candidate Recommendation May 2003), which

few browsers actually supported (opacity was implemented in Firefox 1.0, Opera

9, and Safari 1.2). Therefore, authors resorted to using vendor-specific extensions

to cater for the lack of CSS3 opacity support at the time. Gecko-based browsers (like

Mozilla) used the –moz-opacity property, and Safari 1.1 used -khtml-opacity.

Internet Explorer versions 5.5 and above used the non-standard filter property

(p. 381).

Bringing together the above extensions, the following method was (and is still)

commonly used to apply opacity to a range of browsers:

.test{

 background: red;

 /* IE filter extension */

 filter: progid:DXImageTransform.Microsoft.Alpha(opacity=60);

 width:100%; /* Required for IE filter */

 -moz-opacity: 0.6; /* Mozilla extension */

The Ultimate CSS Reference 370

-khtml-opacity:0.6; /* Konqueror extension (Safari 1.1)*/

 opacity: 0.6; /* the correct CSS3 syntax */

}

In the code fragment above, Internet Explorer will use the filter property and

ignore the other opacity declarations. Older Gecko browsers that don’t understand

the CSS3 opacity property will respect the –moz-opacity property instead, and

Safari 1.1 will respect the -khtml-opacity property. Finally, if it’s supported, the

CSS3 opacity property will be respected by other browsers and browser versions.

Of course, a browser that doesn’t support element opacity will ignore the lot.

The Internet Explorer filter property is a proprietary Microsoft extension to CSS

that clearly doesn’t follow the correct naming rules for vendor-specific extensions.

On the other hand, the Mozilla and Safari (-moz-opacity and –khtml-opacity)

properties do follow the rules, and although the code won’t validate, you can be

sure these properties will be relatively safe from conflicts.

Even though browsers such as Firefox, Opera, and Safari eventually implemented

the CSS3 opacity property, the style rules like the one in the example above still

continued to work, ensuring a seamless transition between the old and the new.

As you can see, extensions can be useful, and can provide a measure of longevity;

however, it’s not advisable to rely on the availability of extensions. It’s also possible

that CSS3 properties may be changed before they become the standard. Therefore,

as the W3C states, “Authors should avoid vendor-specific extensions.”

Due to the very nature of vendor-specific extensions, they’re not well documented

for public use, so it’s difficult to provide full and accurate listings of all the available

extensions. The following links may be used as a guide, but we urge you to carry

out your own research if you want to use these extensions:

■ Internet Explorer CSS Attributes: Index6

■ CSS Reference: Mozilla Extensions7

■ CSS3 Columns in Mozilla8

6 http://msdn.microsoft.com/workshop/author/css/reference/attributes.asp

7 http://developer.mozilla.org/en/docs/CSS_Reference:Mozilla_Extensions

8 http://developer.mozilla.org/en/docs/CSS3_Columns

http://msdn.microsoft.com/workshop/author/css/reference/attributes.asp
http://developer.mozilla.org/en/docs/CSS_Reference:Mozilla_Extensions
http://developer.mozilla.org/en/docs/CSS3_Columns

371 Vendor-specific Properties

■ Safari CSS Reference9

■ Webkit CSS Styles10

■ Opera 9 CSS Support11

■ Opera CSS Extensions12

As we already mentioned, we don’t recommend that you use these extensions in a

real application. It’s fine to use them for testing purposes, and for trying out CSS

properties that haven’t been implemented yet. This will prepare and educate you

for the time when the correct CSS syntax becomes available for general use.

While an explanation of all the properties is beyond the scope of this book, we will

look at a few that you might find useful, and investigate a few extensions that you

might find in use elsewhere.

Mozilla Extensions
Here’s a very small selection of the available Mozilla CSS extensions.

Vendor-specific Properties

9 http://tinyurl.com/26e9vl
10 http://qooxdoo.org/documentation/general/webkit_css_styles
11 http://www.opera.com/docs/specs/opera9/css/
12 http://www.blooberry.com/indexdot/css/properties/extensions/operaextensions.htm

http://tinyurl.com/26e9vl
http://qooxdoo.org/documentation/general/webkit_css_styles
http://www.opera.com/docs/specs/opera9/css/
http://www.blooberry.com/indexdot/css/properties/extensions/operaextensions.htm

The Ultimate CSS Reference 372

-moz-border-radius

-moz-border-radius: { { length | percentage } 1 to 4

values | inherit } ;

SPEC
version initialinherited

N/A0NO
BROWSER SUPPORT

Op9.2Saf3FF1+IE7
NONENONEFULLNONE

-moz-border-radius 14 is Gecko’s

equivalent to CSS3’s border-radius 15

property, although it differs in a few

respects that are discussed below. This

property allows us to specify rounded

borders, or rounded backgrounds if no

borders have been defined.

The main differences are that the Gecko

shorthand property –moz-border-radius will allow each individual corner to have

a different radius, whereas the CSS3 property defines all four corners to be the same

size, but caters for elliptical rounding by allowing two values to be specified. It’s

possible to specify the radius of individual corners in the CSS3 version of this

property using more specific properties such as border-top-right-radius. The

Gecko version also allows individual corners to be set using the following properties:

Example

This rule applies rounded corners to the
.test element:

.test{
 -moz-border-radius: 10px;
}

■ -moz-border-radius-bottomleft (rounds the bottom-left curve)

■ -moz-border-radius-bottomright (rounds the bottom-right curve)

■ -moz-border-radius-topleft (rounds the top-left curve)

■ -moz-border-radius-topright (rounds the top-right curve)

Gecko doesn’t support elliptical rounding at all, and this is likely to be a source of

confusion when defining different values for the corners using the shorthand

–moz-border-radius. Gecko will see the specified values in the order top left, top

right, bottom right, and bottom left. If fewer than four values are provided, the list

of values is repeated to fill the remaining values. Consider the following rule:

14 http://developer.mozilla.org/en/docs/CSS:-moz-border-radius
15 http://www.w3.org/TR/css3-background/#the-border-radius

http://developer.mozilla.org/en/docs/CSS:-moz-border-radius
http://www.w3.org/TR/css3-background/#the-border-radius

373Vendor-specific Properties

.test{

 background-color: #ffffcc;

 -moz-border-radius: 10px 30px;

 border-radius: 10px 30px;

 border: 1px solid #000;

 padding: 10px;

}

The above code would produce different results in different browsers. CSS3-capable

browsers would apply a corner that has a horizontal radius of 10px and a vertical

radius of 30px to each corner. Gecko browsers, on the other hand, will display

top-left and bottom-right corners with a 10px radius (horizontal and vertical radii),

and top-right and bottom-left corners with a 30px radius, as is shown in Figure 16.1.

Vendor-specific Properties

Figure 16.1: Rounded corners with –moz-border-radius

Therefore, to be safe in the future, it would be wise to specify for the

–moz-border-radius property, and the CSS3 border-radius properties, values that

will produce the same results in both types of browsers. The following example

demonstrates this:

.test{

 background-color: #ffffcc;

 -moz-border-radius: 10px;

 border-radius: 10px;

 border: 1px solid #000;

 padding: 10px;

}

In this case, every one of the border’s corners to which this rule is applied will have

a horizontal radius of 10px and a vertical radius of 10px, as shown in Figure 16.2.

Figure 16.2: Equal radius for both properties

The Ultimate CSS Reference 374

Using an approach that respects the CSS3 specifications ensures that we have a

better chance of maintaining future compatibility than using the non-standard

features of the –moz-border-radius property.

The CSS3 border-radius property will also round backgrounds so that they’re

contained within the border of the element. If no border has been set, the background

is still rounded, but no border is applied. The Mozilla extension will only round

background colors, not background images.

border-radius in Other Browsers
Safari 3 supports the -webkit-border-radius property and seems to follow the
CSS3 specifications for the border-radius property.

Value

This property accepts between one and four length values in the order top-left,

top-right, bottom-right, and bottom-left. If less than four values are provided, the

list of values is repeated to fill the remaining values.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneNoneNoneNoneFullFullFullNoneNoneNone

This is a proprietary Mozilla extension to the CSS standard.

375Vendor-specific Properties

-moz-box-sizing

-moz-box-sizing: { content-box | border-box |

padding-box } ;

This property can be used to specify the

CSS box model that’s used to calculate

the widths and heights of elements.

-moz-box-sizing16 is similar to the CSS3

proposal called box-sizing17 but, again,

exhibits differences: the CSS3 proposal

doesn’t include the value padding-box.

In the following example, we specify

that the border-box box model is to be

used to calculate the dimensions of matching elements, where the padding and

borders will be included within the dimensions, rather than added to them:

Example

This rule will cause the browser to render
the .example element using the
padding-box box sizing model:

.example {
 -moz-box-sizing: padding-box;
}

.example {

 -moz-box-sizing: border-box;

 box-sizing: border-box;

 width: 200px;

 height: 120px;

 padding: 30px;

 border: 5px solid #000;

 background: #ffffcc;

 text-align: center;

}

The results of the CSS above can be seen in Figure 16.3.

SPEC
version initialinherited

N/Acontent-boxNO
BROWSER SUPPORT

Op9.2Saf3FF1+IE7
NONENONEFULLNONE

Vendor-specific Properties

Figure 16.3: Mozilla border-box dimensions

16 http://developer.mozilla.org/en/docs/CSS:-moz-box-sizing
17 http://www.w3.org/TR/css3-ui/#box-model

http://developer.mozilla.org/en/docs/CSS:-moz-box-sizing
http://www.w3.org/TR/css3-ui/#box-model

The Ultimate CSS Reference 376

As you can see, the padding and borders have not added to the element’s overall

width or height. Instead, the content area has been reduced by the size of the

padding. The result is the same behavior that Internet Explorer versions 6 and 7

exhibit while in quirks mode, and that Internet Explorer for Windows versions 5

and 5.5 will display at all times. There are merits in both box models, as we’ve

already discussed in The Internet Explorer 5 Box Model (p. 156).

box-sizing in Other Browsers
Opera, since version 8.5, has supported the CSS3 box-sizing property. Safari 3
supports the -webkit-box-sizing property, which matches the specifications for
the CSS3 property.

Value

content-box If this value is specified, the width and height properties represent

only the dimensions of the content—they don’t include the border,

margin, or padding. This reflects the default CSS2 box model

(p. 142).

padding-box If the value padding-box is specified, the width and height

properties include the padding size with the content dimensions,

but don’t include the border or margin. This value isn’t included

in the CSS3 box-sizing property specifications.

border-box If the value border-box is specified, the width and height properties

represent the sum of the padding size, border size, and the content

dimensions, but don’t include the margin. This box sizing model

reflects the IE5 box model (p. 156).

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneNoneNoneNoneFullFullFullNoneNoneNone

This is a proprietary Mozilla extension to the CSS standard.

The display Property Value: -moz-inline-box
The value -moz-inline-box is the Mozilla equivalent to CSS2.1’s inline-block18

display value. It will allow an element to generate a block box that can be flowed

as a single inline box, similar to the way replaced elements, such as images, are

handled. This allows the box to sit on the same line as other inline or inline-block

boxes, though it will still be able to take height and width dimensions in the way

that block level boxes can.

This facility would be useful in the case of a group of horizontal elements of varying

dimensions that we wanted to center horizontally in the available width. This effect

would not be possible with floated elements, which would just float to one side or

the other; dimensions cannot be defined for inline elements.

Vendor-specific Properties
377Vendor-specific Properties

The following example creates three inline-block boxes that are centered in the

available width:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1">

<title>moz-inline-box</title>

<style type="text/css">

.outer{

 width: 500px;

 text-align: center;

 border: 1px solid #000;

 padding: 1em;

}

.box {

 display: -moz-inline-box;

 display: inline-block;

 padding: 1em;

 background-color: #ccc;

 border: 1px dotted #000;

}

#box1 {

 width: 150px;

 height: 100px;

18 http://www.w3.org/TR/CSS21/visuren.html#propdef-display

http://www.w3.org/TR/CSS21/visuren.html#propdef-display

The Ultimate CSS Reference 378

}

#box2 {

 width: 100px;

 height: 150px;

 margin: 0 5px

}

#box3 {

 width: 75px;

 height: 75px;

}

</style>

<!--[if IE]>

<style type="text/css">

.box {

 display: inline;

 vertical-align: top;

}

</style>

<![endif]-->

</head>

<body>

<div class="outer">

 <div id="box1" class="box">Box 1</div>

 <div id="box2" class="box">Box 2</div>

 <div id="box3" class="box">Box 3</div>

</div>

</body>

</html>

The result of this code is shown in Figure 16.4.

Figure 16.4: inline-block example

inline-block in Other Browsers
The above example will work in the latest versions of Safari and Opera too, because
they support the CSS2.1 display property value inline-block.

Internet Explorer for Windows versions 5 and upwards have also been catered for:
we can use conditional comments (p. 394) to supply them with the display value
inline. Without straying too far from the original topic, we can have IE can make
block-level elements behave as inline-block boxes simply by setting one of the
properties that trigger an element to gain a layout and then, in a separate style block,
declaring the element to display inline. The element will behave in most respects
as though the display value was inline-block.

Internet Explorer for Windows only understands the display value inline-block
when it’s applied to inline elements, which rather defeats the purpose in most cases.
However, using the method above, we can coax IE into displaying block-level
elements as inline-block boxes. The layout trigger is actually the display:
inline-block; declaration, but it could equally well be any of the other properties
that cause an element to gain a layout. See The Internet Explorer hasLayout Property
(p. 158) for more information on IE and layout.

Vendor-specific Properties
379Vendor-specific Properties

Internet Explorer Extensions
These are some of the CSS extensions available for Internet Explorer.

The Ultimate CSS Reference 380

zoom

zoom: { number | percentage | normal } ;

Internet Explorer for Windows versions

5.5 and above support the non-standard

property zoom,19 which sets the

magnification scale of an element.

There’s no CSS3 equivalent to this

property (as yet).

The zoom property isn’t inherited, but

it will affect the children of the element

to which it is applied, which will be

SPEC
version initialinherited

N/AnormalNO
BROWSER SUPPORT

Op9.2Saf3FF2IE5.5+
NONENONENONEFULL

Example

In the following example, all images in the
document have their magnification levels
increased by 150%:

img {
 zoom: 150%;
}

magnified along with the parent. The

content surrounding an element that has zoom applied will reflow to account for

the resizing that will occur when zoom is set to a value other than normal.

One of the main uses for zoom has been to ensure that an element has a layout. It’s

commonly used with a value of 1.0 (normal), so that no other changes are evident

on the page. Refer to The Internet Explorer hasLayout Property (p. 158) for a longer

discussion of the usage that the zoom property can be put to when debugging CSS

issues in Internet Explorer.

Value

The value normal is the default, and produces no magnification.

Number values are specified as floating-point numbers that represent the

magnification scale where 1.0 is equivalent to normal.

Percentage values represent a percentage of the magnification scale where 100% is

equal to normal (note that decimals of percentages are ignored).

19 http://msdn2.microsoft.com/en-us/library/ms535169.aspx

http://msdn2.microsoft.com/en-us/library/ms535169.aspx

381 Vendor-specific Properties

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneNoneNoneNoneNoneNoneNoneFullFullFull

This property is a proprietary Microsoft extension to the CSS standard.

filter

filter:filter;

Since version 4, Internet Explorer for

Windows has implemented a range of

visual effects and transitions through

the use of the proprietary filter

property. Many weird and wonderful

filters20 are available (there are too

many to mention here!) but it’s worth

documenting some of them. The syntax

used in the examples of filter

provided here, however, will only

function in Internet Explorer 5.5 or

later.

SPEC
version initialinherited

N/AN/ANO
BROWSER SUPPORT

Op9.2Saf3FF2IE5.5+
NONENONENONEFULL

Example

This example applies a filter called
MotionBlur to the element with the ID
"example":

#example {
 filter: progid:DXImageTransform

➥ .Microsoft.MotionBlur(
➥ strength=10,
➥ direction=310);

}

Vendor-specific Properties

Filters and Layout
For filters to work, the element in question must have a layout—a requirement that
can be achieved most simply by setting a dimension such as width. See The Internet
Explorer hasLayout Property (p. 158) for more information on IE and layout, and
other properties that cause an element to gain a layout.

As we saw in Vendor-specific Properties (p. 367), the Alpha filter21 is a popular filter

that can be used to control the opacity levels of elements in Internet Explorer. The

20 http://msdn2.microsoft.com/en-us/library/ms532847.aspx

21 http://msdn2.microsoft.com/en-us/library/ms532967.aspx

http://msdn2.microsoft.com/en-us/library/ms532847.aspx
http://msdn2.microsoft.com/en-us/library/ms532847.aspx
http://msdn2.microsoft.com/en-us/library/ms532967.aspx

The Ultimate CSS Reference 382

AlphaImageLoader22 is another popular filter which can be used to provide support

for PNG (Portable Network Graphic)23 transparency in IE5.5 and IE6 (IE7 already

offers native support for PNG transparency). IE6 and earlier versions don’t natively

support alpha transparency (partial levels of transparency)—they support only

binary transparency, where pixels are either fully opaque or fully transparent.

The AlphaImageLoader filter will display an image within an element between that

element’s background and its content. The filter doesn’t have the same features as

CSS background images, so its use is limited: you will be able to stretch or shrink

the image, crop the image, or leave the image at its initial size, but you won’t be

able to specify the equivalent of background-repeat or background-position for

it.

When you use this filter, you set the URI of the image to be used via the src attribute.

You then have three options for displaying that image using the sizingMethod

attribute:

crop	 This setting clips the image to fit the dimensions of the containing object.

image	 This is the default value, and enlarges or reduces the border of the object

to fit the dimensions of the image; the image remains at its original size.

scale	 This setting will stretch or shrink the image according to the element’s

size.

In the following example, a background image on an element with the ID "outer"

is stretched to the size of the container in which it resides:

#outer {

 filter: progid:DXImageTransform.Microsoft.AlphaImageLoader(

 src='images/transparent-border.png',

 sizingMethod='scale');

}

As you can see, the filter syntax is a bit of a mouthful, but the only parts that need

concern us are the src and sizingMethod values, as explained above.

22 http://msdn2.microsoft.com/en-us/library/ms532969.aspx

23 http://en.wikipedia.org/wiki/Portable_Network_Graphics

http://msdn2.microsoft.com/en-us/library/ms532969.aspx
http://en.wikipedia.org/wiki/Portable_Network_Graphics

Relative Image Paths
Unlike normal background images in CSS, the path to the image file is relative to
the HTML page location, not the CSS file. For that reason, it’s safer to use an absolute
address for the image, so that no conflicts arise.

For the filter to work, the element in question must have a layout, which can be

achieved most simply by setting a dimension. See The Internet Explorer hasLayout

Property (p. 158) for more information on IE and layout, and other properties that

cause an element to gain a layout. It’s also important to note that IE shouldn’t have

a background image specified, as that would conflict with the filter and ruin the

effect. Therefore, when you’re using the filter, you’ll need to use some other sort of

filter, such as conditional comments (p. 394), or a hack like the one below.

Vendor-specific Properties
383Vendor-specific Properties

Here’s an example that uses the star selector hack (p. 402) to supply the required

declarations to IE6 and under (IE7 will ignore the rule):

#outer{

 width: 796px;

 margin: auto;

 background: url(images/transparent-border.png) repeat-y left top;

}

* html #outer {

 background: none; /*Remove background*/

 filter: progid:DXImageTransform.Microsoft.AlphaImageLoader(

 src='images/transparent-border.png',

 sizingMethod='scale');

}

In the above CSS, we add a rule targeted to IE6 and earlier versions, using the selector

* html #outer, in which we set the background-image property to none and specify

the AlphaImageLoader filter. The result of the above CSS is that browsers that

support PNG transparency will repeat the background image along the y axis, whereas

the AlphaImageLoader filter will just stretch the image to the whole size of the

element. This will cause the image to appear differently from what was expected,

as you can see in Figure 16.5.

The Ultimate CSS Reference 384

Figure 16.5: Firefox 2 and Internet Explorer 6

The intended effect is accurately displayed in Firefox 2 (on the left): a transparent

border down the left-hand side. The transparent border has been stretched in IE6

(on the right) to cover the entire area. If we want to create this effect in IE6 and

under, our only other choice is to use a very long image (to cover expansion of the

element) and set the sizingMethod to "crop", but this approach may not always be

feasible.

For an image that doesn’t need to stretch or scale with the layout, where

sizingMethod can be set to "image" the effect will be much better, as can be seen

Figure 16.6.

Figure 16.6: Transparency with no scaling

Firefox 2 is pictured on the left, while IE6 is on the right. There’s very little difference

between the two since the image size remains unchanged.

Another issue arises from the filter’s use: anchors can’t be clicked when the anchor

lies on a background that’s been created by the filter. Usually, what happens is that

the filter is applied to an element that has position set to relative, and the links

suddenly stop working. Sometimes, we can fix the issue by setting position to

relative for the anchors in question, and setting a z-index appropriately. This

isn’t a foolproof method, though, and the solution is often to remove the filter from

385Vendor-specific Properties

the original element, and instead to place it on a nested element that doesn’t have

position set to relative.

It has also been noted24 that the size of the image used can have an impact on

whether or not the anchors are clickable, but in most cases the solutions already

mentioned above are enough to resolve the issue.

The Shadow25 and DropShadow26 filters can be used to create shadow effects for

HTML elements. The following example uses the DropShadow filter to create a

shadow around an h1 element that has a class of "shadow":

<h1 class="shadow">Shadow Heading</h1>

Here’s the rule with which we specify the filter:

h1.shadow {

 width: 260px;

 color: gray;

 filter: progid:DXImageTransform.Microsoft.DropShadow(

 offx=2, offy=1, color=#000000);

}

The DropShadow filter accepts offx and offy attribute values, which represent the

offset distance in pixels along the x and y axes respectively, and a color attribute

value for the shadow color.

The result of that CSS can be seen in Figure 16.7.

Vendor-specific Properties

Figure 16.7: Applying the DropShadow filter

If we keep the HTML the same as the previous example, we can specify the Shadow

filter like this:

24 http://www.daltonlp.com/view/217

25 http://msdn2.microsoft.com/en-us/library/ms533086.aspx

26 http://msdn2.microsoft.com/en-us/library/ms532985.aspx

http://www.daltonlp.com/view/217
http://msdn2.microsoft.com/en-us/library/ms533086.aspx
http://msdn2.microsoft.com/en-us/library/ms532985.aspx

The Ultimate CSS Reference 386

h1.shadow {

 width: 260px;

 color: gray;

 filter: progid:DXImageTransform.Microsoft.Shadow(

 color=#000000,direction=45);

}

The Shadow filter also accepts a color attribute value, but instead of offsets, a

direction is specified. The direction value is an integer between "0" and "360",

representing degrees; the default value is "225".

The result of this CSS can be seen in Figure 16.8.

Figure 16.8: Applying the Shadow filter

Value

The value of the filter property begins with the filter name followed by any applicable

attributes and values. Each filter has a different set of attributes available, so you’ll

need to check the Microsoft Developer Network site for their details.

Compatibility

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneNoneNoneNoneNoneNoneNoneFullFullFull

This property is a proprietary Microsoft CSS extension.

387Vendor-specific Properties

behavior

behavior:URI;

Internet Explorer versions 5 and later

support the behavior property.27 The

behavior property lets you use CSS to

attach a script to a specific element in

order to implement DHTML (Dynamic

HTML) components.

The script resides in an HTC (HTML

Component) file. HTC files have the

extension .htc, and are HTML files that

contain a script plus a set of

HTC-specific elements that define the components.

Example

The following CSS attaches the component
file iepngfix.htc to all images in a web
page:

img {
 behavior: url(iepngfix.htc);
}

It’s beyond the scope of this reference to explain the ins and outs of HTC files, but

if you visit the Microsoft Developers Network,28 you’ll find a wealth of information

that’ll keep you occupied for hours.

An example of an HTML component, the IE PNG Fix component can be found at

TwinHelix Designs.29 This component implements alpha transparency for PNG

images in IE5.5 and 6. It’s the one you’ll find referenced in the example.

Value

The behavior property requires the URI to the HTC file to be specified using the

url() syntax. Multiple HTC files can be referenced with a space-delimited list.

Compatibility

SPEC
version initialinherited

N/AN/ANO
BROWSER SUPPORT

Op9.2Saf3FF2IE5.5+
NONENONENONEFULL

Vendor-specific Properties

Opera SafariFirefox Internet Explorer
9.23.02.01.32.01.51.07.06.05.5

NoneNoneNoneNoneNoneNoneNoneFullFullFull

27 http://msdn2.microsoft.com/en-us/library/ms530723.aspx
28 http://msdn2.microsoft.com/en-us/library/ms531078.aspx
29 http://www.twinhelix.com/css/iepngfix/

http://msdn2.microsoft.com/en-us/library/ms530723.aspx
http://msdn2.microsoft.com/en-us/library/ms531078.aspx
http://www.twinhelix.com/css/iepngfix/

The Ultimate CSS Reference 388

This property is a proprietary Microsoft extension to CSS.

The expression Property Value
Internet Explorer 5 for Windows introduced CSS expressions,30 an extension that

allows us to use Microsoft JScript31 to assign a dynamic value to a CSS property

value.32 This value could be something as simple as a mathematical calculation, or

something as complicated as an expression to calculate an appropriate width based

on the size of the browser window.

Active Scripting Must Be Enabled
In order for expressions to work they do need JavaScript to be enabled on the client
browser. Even though they are called from within a CSS style sheet they’ll fail if
JavaScript is disabled.

Without getting into too much detail about scripting, here are a couple of examples

to give you an idea of how CSS expressions work.

The first example demonstrates how we can use an expression to imitate the

min-width and max-width CSS properties that aren’t supported by Internet Explorer

6 and earlier versions. The following example applies to Internet Explorer Windows

versions 5 and above:

#outer{

 width: expression(

 (d = document.compatMode == "CSS1Compat" ?

document.documentElement : document.body) &&

 (d.clientWidth > 1024 ? "1024px" :

d.clientWidth < 600 ? "600px" : "auto")

);

 background: red;

}

30 http://msdn2.microsoft.com/en-us/library/ms537634.aspx#Implement
31 http://msdn2.microsoft.com/en-us/library/hbxc2t98.aspx
32 JScript is Microsoft’s implementation of JavaScript. While JScript’s core language implementation

is basically the same as JavaScript’s, the DOM implementation is quite different.

http://msdn2.microsoft.com/en-us/library/ms537634.aspx#Implement
http://msdn2.microsoft.com/en-us/library/hbxc2t98.aspx

This expression results in a value that’s applied to the width property. The element

with an ID of "outer" will be restricted to a maximum width of 1024 pixels, and a

minimum width of 600 pixels, depending on the size of the browser window. The

width value is automatically monitored and updated, so the user’s resizing of the

browser window will trigger whether the minimum or maximum width should be

in effect. Note that the expression needs to take into account whether the element

is being rendered in quirks or standards mode in order to ascertain the correct value

for clientWidth, as the method for obtaining this value varies between these two

modes.

In the next example, we imitate the position property value fixed, which, again,

isn’t supported in Internet Explorer for Windows versions 6 and earlier:

Vendor-specific Properties
389Vendor-specific Properties

h1#fixed {

 position: absolute;

 top: expression(

 (d = document.compatMode == "CSS1Compat" ?

document.documentElement : document.body) &&

(eval(d.scrollTop))

);

}

The h1 element with ID "fixed" will remain at the top of the viewport even though

the content of the main document scrolls up and away. The display is a little jerky,

which exemplifies a drawback of using expressions: a considerable performance

overhead incurred by doing so. As the values are being monitored constantly you

may find that the performance of the page becomes slower, and the display isn’t as

smooth as usual when windows are resized or redrawn.

Expressions are a powerful feature, but they do blur the distinction between

presentation and behavior. Think carefully before you use expressions, and assess

whether the behavior you want could be implemented more cleanly via a dedicated

script.

The Ultimate CSS Reference 390

Summary

Vendor-specific extensions are proprietary properties implemented by browser

vendors and were never meant for normal consumption by authors. They follow a

pre-defined format that allows them to exist within the rules of CSS and to be

protected from conflicts with existing and future properties.

Vendor-specific extensions allow you to experiment with properties that have not

been fully implemented as standard CSS properties, and also allow you to apply

proprietary properties specific to that vendor’s implementation. They should be

avoided in everyday applications, as there is no guarantee of consistency and they

are not subject to the same rigor that applies to standard CSS properties.

In some cases, if there is no other solution, these extensions can be employed to

good effect but there is always a risk involved in doing this. If you cater for the risks

and craft your code carefully, there are occasions when these extensions can be

used without too much danger. The onus as usual lies upon the author to make sure

that the code used is as stable as possible by testing thoroughly before use.

Internet Explorer implements a wide variety of extensions that don’t follow the CSS

specifications and in most cases are unique to IE (as in the case of expressions,

behaviors and filters). Some of these extensions can prove very useful and provide

support for missing features, but as usual we urge authors to tread carefully and

only use an extension as a last resort.

Chapter 17
Workarounds, Filters, and Hacks
Unfortunately, as you deal with CSS you’ll eventually discover differences in the

way user agents apply and render CSS rules. These differences can be caused by

the user agents’ varying interpretations of, and levels of support for, the CSS

standards, as well as rendering problems and bugs. But—luckily for us—they can

be addressed using workarounds, filters, and hacks.

If you search the Web for “CSS hacks,” you’ll find numerous sites and articles from

as far back as 2001 describing ways to tackle browser-related CSS problems. These

problems were discovered once people started attempting to create completely

CSS-based web design and layout. Happily, modern browser support for CSS is

fairly good, so many of those old-school hacks are no longer needed. Older browsers

have fallen into disuse and workarounds for problematic browsers that are still in

use are well documented.

All software has bugs. Browsers are no exception to this rule, but some browsers

are certainly buggier than others. In the past, some bugs related to browsers’ CSS

rendering caused web pages to become unreadable, and in some cases, they even

W
orkarounds, Filters, and

H
acks

The Ultimate CSS Reference 392

crashed browsers. It’s also true that browsers don’t provide perfect support for

CSS—a fact that’s often the cause of much frustration. Of course, the situation was

far worse in the past, when levels of support could differ wildly.

Workarounds, Filters, and Hacks Defined

Once CSS-based layout and design became popular, web designers and developers

needed a way to supply different CSS rules to different browsers—a capability that’s

absent from CSS. A hack has typically been regarded as a temporary, inelegant, or

unadvised solution to a problem. But in CSS terms, applying a hack generally means

exploiting incorrect or buggy CSS features in order to target or exclude a browser,

or group of browsers, so that alternative styling may be applied to them.

Other techniques—often called workarounds or filters—include targeting the

proprietary features of a specific browser, or employing advanced CSS features to

exclude older browsers that don’t support the newer features. If all this jargon’s

getting a bit much for you, just remember that workarounds are CSS-oriented

solutions to these problems, while filters and hacks are browser-oriented solutions.

The Problem with Workarounds, Filters, and Hacks

While it’s often tempting to leap in and apply a complicated hack to force a particular

browser to behave, a more careful approach is needed to address CSS problems

efficiently. First, you need to make sure that the problem you’re addressing is a real

CSS problem—not just the result of incorrect CSS code or an incomplete

understanding of CSS. If your web page looks as you intended in one browser but

not another, you may be tempted to think that the browser that’s not displaying

your site properly has a CSS bug, but of course the exact opposite is equally likely.

Consider, for instance, the fact that different browsers apply varying default margin

and padding values to HTML elements like headings and list items. You’ll often

see sites on which CSS hacks are used to apply particular rules to different browsers

simply because the designers weren’t aware of the variations in these values. The

use of CSS hacks in these kinds of situations is redundant; simply spending a few

minutes to gain an understanding of the margin and padding rules would negate

the need to apply hacks.

393Workarounds, Filters, and Hacks

If you’re sure that you have a valid CSS rendering problem, and you’re tempted to

use a hack, first see whether a change of design could enable you to avoid the issue

altogether. If you can design layouts that don’t depend on problematic CSS features,

in most cases you won’t need hacks at all.

The Internet Explorer 5 box model (p. 156) problem is a famous example of the

unnecessary use of hacks. Many complicated hacks (p. 405) were developed to solve

this problem, but with a simple design change—the addition of padding to the

parent of an element with a fixed width, instead of to the element itself—designers

could have avoided the problem altogether.1 This approach wasn’t possible in every

case, but the option was there.

Avoiding Implementation Pitfalls

If you find yourself in a position where you have no choice but to use a workaround,

filter, or hack, be aware of the dangers involved. Your chosen hack may be

unreliable—in the future, it may actually cause more problems than would have

resulted had you not used it at all. As newer browser versions are produced, new

features are implemented, and bugs are fixed, the hack mechanism you’ve been

using may cease to work. Also consider the maintenance issues that can arise when

many hacks are spread throughout a style sheet.

In reality, the only completely safe way to use a browser hack is to target dead

browsers—those browsers that are no longer in development, like Internet Explorer

6—and target them in such a way that you can be sure the hacks you’re using will

continue to work in that browser.

Don’t apply hacks to newer browsers, such as Firefox 2, and Opera 9—they’re

updated regularly, and new features and bug fixes are addressed relatively quickly.

It’s just not safe to use a hack for these newer browsers, and usually they don’t need

it anyway—even if they do need adjustment, a change of design will often

accommodate any deficiencies you find. Finally, whenever you use a hack, you face

the difficulty of finding one that will work on just the browser you’re targeting

1	 This fact was documented in Dave Shea’s CSS best practice crib sheet

[http://www.mezzoblue.com/archives/2003/11/19/css_crib_she/].

W
orkarounds, Filters, and

H
acks

http://www.mezzoblue.com/archives/2003/11/19/css_crib_she/
http://www.mezzoblue.com/archives/2003/11/19/css_crib_she/

The Ultimate CSS Reference 394

without affecting all the others. Let us tell you now: in the end, it’s a fruitless pursuit.

That’s why the modern approach is to attempt to shun hacks altogether.

Using conditional comments (p. 394) is now the recommended way to target various

versions of Internet Explorer; a number of workaround techniques (p. 400) that don’t

rely on ugly hacks are also available. Finally, we’ve included a list of popular CSS

hacks (p. 404) here, not because they’re recommended, but in case you come across

them and need to understand what they attempt to achieve.

Internet Explorer Conditional Comments
Conditional comments3 comprise a proprietary Microsoft extension to Internet

Explorer that provides a mechanism to target each of the versions of IE either

specifically, or as a group. This extension was introduced in IE5, so it can only be

used in documents rendered in browsers from IE5 up on the Windows platform.

Conditional comments use a special syntax—HTML markup wrapped in a

conditional statement—and are placed within an HTML comment. If the statement

evaluates to true, the enclosed HTML is revealed within the HTML document. If

the statement evaluates to false, the enclosed HTML remains hidden. Because

conditional comments are placed with HTML comments, the enclosed HTML also

remains hidden from all browsers that don’t support conditional comments.

Conditional comments can be placed at any point in the document at which normal

comments can be located. As such, you can’t place them in external CSS files, or

in between <style> tags. However, they can be used to link to specific files, or to

provide specific HTML (or CSS) content for the IE versions specified within the

conditional statement. It may seem odd to discuss HTML markup in a CSS reference,

but conditional comments are Microsoft’s recommended mechanism4 for delivering

targeted CSS to its browser.

3 http://msdn2.microsoft.com/en-us/library/ms537512.aspx

4 http://blogs.msdn.com/ie/archive/2005/10/12/480242.aspx

http://msdn2.microsoft.com/en-us/library/ms537512.aspx
http://blogs.msdn.com/ie/archive/2005/10/12/480242.aspx

395Workarounds, Filters, and Hacks

Conditional Comment Basics

The basic form of conditional comments is as follows:

<!--[if IE]>

 <link href="iecss.css" rel="stylesheet" type="text/css">

<![endif]-->

The conditional statement is contained within square brackets, and begins with if

followed by an expression. The enclosed HTML content is delimited by the opening

<!--[if]> and a closing <![endif]--> statement.

In the example above, the enclosed HTML content—a <link> tag—will be revealed

to all IE browsers that support conditional comments. It links to a style sheet that

only IE will see. All browsers other than IE versions 5 and later will see the code

above as one simple HTML comment. If we remove the brackets and text for the

sake of clarity, we’re basically left with a normal comment structure as follows:

<!-
<link href="iecss.css" rel="stylesheet" type="text/css" >

-->

Conditional Comment Operators

As we mentioned already, we can use conditional comments to apply CSS rules to

specific IE browser versions with the help of comparison operators that allow each

version of IE to be targeted precisely. We can write complex expressions using one

or more of the operators listed in Table 17.1.

Table 17.1: Conditional Comment Operators

W
orkarounds, Filters, and

H
acks

DescriptionOperator

represents Internet Explorer; if a number value is also specified, it represents a version
vector

IE

less than operator lt

less than or equal tolte

DescriptionOperator

greater than gt

greater than or equal to gte

the NOT operator !

subexpression operator ()

the AND operator &

the OR operator |

evaluates to truetrue

evaluates to falsefalse

The Ultimate CSS Reference 396

So, for example, you’d use the following markup to target IE version 7:

<!--[if IE 7]>

 <p>Only IE 7 will see this</p>

<![endif]-->

Alternatively, if you wanted to target all IE browsers except IE7 and above (that is,

versions prior to IE7), you could use this method:

<!--[if lt IE 7]>

 <p>Only less than IE 7 will see this</p>

<![endif]-->

If you wanted to include IE7 in that list, you’d use lte operator, which selects all

version numbers that are less than or equal to 7.

The gt (greater than) and gte (greater than or equal to) operators work similarly.

Have a look at this example:

397Workarounds, Filters, and Hacks

<!--[if gte IE 6]>

 <p>Only IE 6 and greater will see this</p>

<![endif]-->

This conditional comment will select all IE browsers with version numbers greater

than or equal to 6, which will obviously include IE7 and even IE8—if it ever makes

an appearance!

It should be noted that when you use a single digit to represent the version of IE

you want to target (for example, [if IE 7]) that directive will be applied to all

versions of that browser including those with version vectors. For example, if you

used the conditional comment below, you’d be including all versions of IE5 including

IE5.5:

<!--[if IE 5]>

 <p>This covers all versions of IE5 including IE5.5</p>

<![endif]-->

Targeting Point Releases
If you want to target a specific point release, you’ll need to specify the correct version
vector.5 You can specify a point release using a number followed by up to four
decimal places. Even though this appears as a decimal number, IE doesn’t see it
that way: each individual digit is compared separately. For example, the expression
[if IE 5] will have a broader match than [if IE 5.0], even though they appear
to be equal decimal number values. The expression [if IE 5.0] will not match
IE5.5.

What this means is that you may need to check the version vector if you’re aiming
to target specific browser versions. For example, Microsoft points out that IE5 on
the Windows 2000 platform has a version vector equal to 5.0002. This means that
the expression [if IE lte 5.0000] would fail to target the release build of IE5.

You can also use the “not” operator, !, to exclude one of the IE browser versions.

To exclude IE6, but not IE7 or IE5 (if ever you wanted to do such a thing), you’d

use this expression:

5 http://msdn2.microsoft.com/en-us/library/ms537512.aspx#Version_Vectors

W
orkarounds, Filters, and

H
acks

http://msdn2.microsoft.com/en-us/library/ms537512.aspx#Version_Vectors
http://msdn2.microsoft.com/en-us/library/ms537512.aspx#Version_Vectors

The Ultimate CSS Reference 398

<!--[if !IE 6]>

 <p>IE7 or IE5 only</p>

<![endif]-->

Downlevel-hidden Conditional Comments

More complicated expressions can be created using one or more of the available

operators. For example, the following conditional comment targets IE6 and IE7

using subexpressions and the OR operator:

<!--[if (IE 6)|(IE 7)]>

 <p>IE6 or IE7 only </p>

<![endif]-->

Microsoft refers to the this style of conditional comments as downlevel-hidden,

since browsers that don’t support conditional comments (including IE4 and earlier)

will interpret the conditional comment code as a standard HTML comment, and

ignore it completely. And yes—Microsoft describes all browsers except IE5 and

later as “downlevel” browsers!

There is, however, another version of conditional comments that will allow these

downlevel browsers to be targeted; they’re called downlevel-revealed conditional

comments.

Downlevel-revealed Conditional Comments

In downlevel-revealed conditional comments, the HTML content inside the

conditional statements is revealed to browsers that don’t support conditional

comments, because the conditional statements—and only the conditional

statements—are ignored. If the statement evaluates to true (in a supporting browser),

the content inside the conditional statements is also revealed.

Unfortunately, the syntax of these downlevel-revealed conditional comments will

often cause HTML validation errors. Here’s Microsoft’s suggested syntax:

<![if !IE]>

 <p>This is shown in downlevel browsers, but is invalid HTML!</p>

<![endif]>

399Workarounds, Filters, and Hacks

However, a better, valid version of the syntax is available.6 It’s been discovered that

if you change the syntax slightly, the downlevel effect can be maintained and the

HTML code will validate:

<!--[if !IE]>-->

 <p>This is shown in downlevel browsers.</p>

<!--<![endif]-->

Here, we simply wrap the conditional statements in HTML comments. It should be

noted that this usage doesn’t conform to Microsoft’s specifications for these

comments, but it presently works in all versions of IE5 and later (including IE7)

and, more to the point, will also validate—unlike Microsoft’s version.

That said, a problem exists with that approach should you wish to target downlevel

browsers as well as a supporting Microsoft browser version. Take a look at this

example, which attempts to target downlevel browsers and IE7 or later:

<!--[if gte IE 7]>-->

 <p>This is shown in downlevel browsers and IE7 or later.</p>

<!--<![endif]-->

This example uses valid HTML, but IE7 and later browsers will also reveal the -->

after the opening conditional statement. The fix suggested by Microsoft is to add

an extra <! just after the opening conditional comment:

<!--[if gte IE 7]><!-->

 <p>This is shown in downlevel browsers and IE7 or later.</p>

<!--<![endif]-->

Conditional Comments in Practice

If you want to use conditional comments in your approach to delivering targeted

CSS, here’s what you can do. First, link to your standard style sheet in the normal

way (via a <link> tag, for example). Then, use conditional comments to link to one

or more other style sheets that contain the CSS targeted towards IE. The IE-only

style sheets should contain only the required CSS fixes. They shouldn’t be a

6 http://www.456bereastreet.com/archive/200511/valid_downlevelrevealed_conditional_comments/

W
orkarounds, Filters, and

H
acks

http://www.456bereastreet.com/archive/200511/valid_downlevelrevealed_conditional_comments/

The Ultimate CSS Reference 400

duplication of your standard style sheet—that would be a waste of bandwidth and

completely redundant anyway. Here’s an example of this approach:

<link href="main.css" rel="stylesheet" type="text/css">

<!--[if IE 7]>

<link href="ie7.css" rel="stylesheet" type="text/css">

<![endif]-->

<!--[if IE 6]>

<link href="ie6.css" rel="stylesheet" type="text/css">

<![endif]-->

<!--[if IE 5]>

<link href="ie5.css" rel="stylesheet" type="text/css">

<![endif]-->

main.css is the standard style sheet, while ie7.css, ie6.css, and ie5.css contain the

CSS for specific IE versions. You may not need to be as version-specific as we’ve

been in this example. Remember that the cascade will be in effect, and that the rules

in the CSS files that are referenced lower down the page source will overrule any

previously defined CSS rules.

Whether you like conditional comments or not, they do make it easy and safe to

target versions of IE, and they’re as future-proof as any of these tricks can be. The

comments also provide a logical structure to your CSS management approach, and

separate the targeted CSS from the standard CSS. At some time in the future when

the targeted CSS is no longer required, the code, which is already separated, can

easily be removed.

Workarounds and Filters
The art of selectively applying CSS to specific browsers probably began with the

exclusion of Netscape Navigator 4. It was discovered that if you used a media value

of anything except "screen" on a style sheet link element, Netscape 4 would ignore

the style sheet. At the time, it was considered safer to avoid attempting to apply

CSS to Netscape because it was so buggy that the CSS was likely to crash the browser.

Not long after that, it was discovered that Netscape didn’t support the @import

at-rule. Simply using @import url(styles/main.css); achieved the same result

and had the added benefit of excluding all other browsers that provided poor CSS

401 Workarounds, Filters, and Hacks

support, like Internet Explorer 4. Thus the concept of filtering out browsers through

the use of more advanced CSS features gained popularity.

Before you dive into CSS filtering, however, you should take a considered approach

to dealing with CSS rendering problems:

1.	 Ensure your CSS validates. CSS validation ensures a reliable baseline for dealing

with CSS issues. Otherwise, you could waste you time chasing phantoms that

turn out merely to be syntax errors.

2.	 Check the specifications. Make sure you’re not imagining problems that don’t

exist. Some concepts like the box model, positioning, and floats are more complex

than people realize, and problems may simply arise from incorrect assumptions

about how CSS is supposed to work. This reference is an excellent place to start

your research.

3.	 Check browser behavior. All browsers have CSS problems of one kind or another.

What you’re experiencing may be a rendering quirk or a bug. Researching the

reason why the problem is occurring will better enable you to deal with it now

and in the future. Web sites like Position Is Everything7 and the Quirksmode

Bug Report8 are great resources.

Searching for a Workaround

Once you’ve been through that process, and have confirmed that yours is indeed a

browser-related problem, your next step should be to search for a known workaround.

Many CSS problems can be solved by adjusting your HTML markup or CSS. For

example, a lot of Internet Explorer rendering quirks can be solved by either enabling

or disabling the proprietary hasLayout property of a given element through the

setting of specific CSS properties—read more about the topic in The Internet Explorer

hasLayout Property (p. 158). Again, the web sites mentioned above, Position Is

Everything and the Quirksmode Bug Report, are a great place to start this research

as they often document usable workarounds for various problems.

W
orkarounds, Filters, and

H
acks

7 http://positioniseverything.net
8 http://www.quirksmode.org/bugreports/index.html

http://positioniseverything.net
http://www.quirksmode.org/bugreports/index.html
http://www.quirksmode.org/bugreports/index.html

The Ultimate CSS Reference 402

Applying a CSS Filter

If no usable workaround exists for your problem, you may have to resort to applying

a different set of rules for a specific browser. You may be able to use a CSS feature

that’s not supported by all browsers in order to direct CSS rules to particular

browsers—a technique that’s often referred to as using a CSS filter. In doing this,

you’re exploiting the feature of CSS error handling (p. 44) that specifies that user

agents must ignore statements and declarations they don’t understand.

Using a child selector (p. 76) is another common example of this kind of filtering

technique. The child selector is 100% valid CSS—it’s only a filter in the sense that

it’s only supported by modern web browsers. Internet Explorer versions prior to 7

have not implemented this feature, so it’s a useful way to hide CSS rules from

Internet Explorer 6 and earlier versions. The child selector is commonly used like

this:

#test{

 position: absolute;

}

html>body #test{

 position: fixed;

}

The filter above is designed to address the fact that Internet Explorer 6 and earlier

versions don’t support the value of fixed for the position property. These browsers

will only set the position of the #test element to absolute, and will ignore the

second rule. Meanwhile, virtually all other modern browsers will set #test’s

position to fixed, because they apply the second rule and overwrite the property.

Though filters can work, you should be wary of rewriting CSS rules for good browsers

in order to avoid problems with bad browsers—it just doesn’t seem to be the right

thing to do. It’s preferable to target problematic browsers and keep your style sheets

uncluttered.

The Star Selector Hack

The star selector hack,9 also known as the star-HTML hack and the Tan hack, because

it was first described in detail by Edwardson Tan, is the most widely used filter; it
9 http://www.info.com.ph/~etan/w3pantheon/style/starhtmlbug.html

http://www.info.com.ph/~etan/w3pantheon/style/starhtmlbug.html

403Workarounds, Filters, and Hacks

relies on a peculiar behavior in Internet Explorer 5.5 and 6. Even though it’s often

labeled a hack, I’ve included it in this section on filters because, despite the fact

that it exploits a browser bug, it uses a valid CSS selector. The selector, however,

should never match any elements; all browsers, except Internet Explorer 5.5 and 6,

understand this fact and ignore the rule.

The technique is simply to apply a descendant selector that makes use of the

universal selector. The universal selector is, of course, valid CSS, so don’t be

confused and start thinking that using the universal selector is bad news. The most

common form of the technique (and the origin of its name) is to compose a rule

with the * html selector. This constitutes valid CSS, but it shouldn’t match any

elements. The selector should apply the rule to any html element that’s the

descendant of any other element and, as html is the root element, it’s never a

descendant of any other element.

However, while most other browsers ignore it, Internet Explorer 5.5 and 6 will

interpret this selector as if there was no universal selector, like the rule below:

html {

⋮ declarations

}

Thus, the star selector hack is a safe way of applying CSS rules to Internet Explorer

5.5 and 6 without affecting other browsers.

You’d use it like this:

.test {

 position: fixed;

}

* html .test{

 position: absolute;

}

Only Internet Explorer 6 and earlier versions will apply the latter rule; other browsers

will ignore it.

The three selectors that function in this way are documented in Table 17.2.

W
orkarounds, Filters, and

H
acks

The Ultimate CSS Reference 404

Table 17.2: Internet Explorer’s Star HTML Selector Bug

Internet Explorer 5.5/6 Interpretation Selector

html* html

* body* * body

html body* html
body

CSS Hacks
CSS hacks have a long and colorful history. For a bit of historical perspective, some

of the most popular CSS hacks are explained below. This is not an exhaustive list,

and there’s really no need to remember all the hacks and variations in detail, but

you should be aware that they exist. For example, if you happen to inherit a site

and discover some obscure CSS notation in an old style sheet, you’ll be able to

identify it and understand its purpose. If you can’t find a particular hack in this

list, look them up as required from the many resources around the Web, including

Dynamic Site Solutions10 and Centricle.com.11

The Backslash and Underscore Hacks

Numerous characters trigger non-compliant behaviors in different browsers. Both

of the hacks we’ll discuss in this section constitute legal CSS, but rely on specific

browser bugs in order to work.

The first application we’ll look at is the backslash hack, in which a backslash

character is inserted into a property name. The backslash indicates a character

escape in CSS escape notation (p. 43) and browsers that comply with the CSS

specification should ignore the character in this context. However, Internet Explorer

5.5 and earlier versions will ignore the whole declaration when they meet a character

escape in the middle of a property name. Here’s an example:

10 http://www.dynamicsitesolutions.com/css/filters/support-chart/

11 http://centricle.com/ref/css/filters/

http://www.dynamicsitesolutions.com/css/filters/support-chart/
http://centricle.com/ref/css/filters/

405Workarounds, Filters, and Hacks

.test {

 height: 500px;

 he\ight: 400px;

}

Modern browsers will apply a height of 400px, but Internet Explorer 5.5 and earlier

versions will retain the value of 500px, since they’ll ignore the latter declaration.

Positioning the Backslash
For this hack to work properly, the backslash must be positioned in the middle of
the property, not at the beginning. Also, it shouldn’t appear before the letters a to
f, or A to F, or numerals 0 to 9—if it does, those characters will be treated as
hexadecimal numbers according to CSS escape notation rules.

The second application we’ll review is the underscore property hack, in which an

underscore character is inserted at the beginning of a property name. This is valid

CSS, and modern browsers will simply ignore the declaration because the property

is unknown. However, Internet Explorer 6 and earlier versions ignore the underscore

and apply the declaration. For example, in the following CSS, most modern browsers

will ignore the second declaration, but Internet Explorer 6 and earlier versions will

apply it:

.test {
 position: fixed;
 _position: absolute;
}

W
orkarounds, Filters, and

H
acks

The Voice-family Hack

The most famous, and perhaps oldest, CSS hack is the voice-family hack, also known

as the box model hack because it was specifically designed to work around the

disparity in the implementation of the box model (p. 142) in Internet Explorer 5.x

and other standards-compliant browsers. It’s also known as the Tantek Hack—named

after its inventor, Tantek Çelik.12 It’s an ugly and complicated hack that’s virtually

12 http://tantek.com/CSS/Examples/boxmodelhack.html

http://tantek.com/CSS/Examples/boxmodelhack.html

The Ultimate CSS Reference 406

impossible to remember off the top of your head. Here’s what the complete hack

looks like:

.test {

width: 500px;

 padding: 50px;

voice-family: "\"}\"";

voice-family: inherit;

 width: 400px;

}

html>body .test{

 width: 400px;

}

The hack worked thanks to a flaw in the CSS parser in Internet Explorer 5.x, and it

effectively cut the declaration block short at the curly brace in the middle of this

section of code: "\"}\"".

This flaw effectively made Internet Explorer 5.x see something like this:

.test {

width: 500px;

padding: 50px;

voice-family: "\"}

The browser ignored the width: 400px; declaration, and retained the 500px width

value. Most other browsers will apply the 400px width instead.

Unfortunately, Opera 5, which was in use at the time, exhibited the same parsing

bug as IE5 and IE5.5, so an extra rule needed to be added using the child selector.

Opera 5 supported the child selector and applied the declaration:

html>body .test{

 width: 400px;

}

As I mentioned, it’s an ugly hack, but it was necessary at the time. Eventually, it

was surpassed by the simpler star selector hack. (p. 402)

407 Workarounds, Filters, and Hacks

The Commented Backslash Hack

This hack targets a CSS parsing bug in Internet Explorer 5 Mac. To hide rules from

IE5 for Mac, simply place a backslash before the close of a comment:

/* begin hiding from IE5 Mac */

.test {

 color: red;

}

/* end */

IE5 for Mac won’t see the close of the comment, so it’ll ignore everything between

the backslash and the end of the next comment.

You can also achieve precisely the opposite effect with the following CSS:

/* apply ONLY to IE5 Mac *//*/

.test {

 color: red;

}

/* end */

The High Pass Filter

The High Pass Filter13 was developed by Tantek Çelik in order to hide a style sheet

from browsers that supported the @import method but didn’t provide a decent level

of support for CSS1. The hack looks like this:

 @import "null.css?\"\{";

@import "highpass.css";

This actually constitutes valid CSS. The first statement attempts to import a file

from the URI null.css?"{, which is an empty file, while the second statement imports

the desired style sheet. Internet Explorer 6 and up, Internet Explorer 5 for Mac,

Netscape 6 and up, and Opera 5 and up could read these two statements correctly,

but older browsers got caught up on the escape characters and failed to load any

style sheets.

W
orkarounds, Filters, and

H
acks

13 http://tantek.com/CSS/Examples/highpass.html

http://tantek.com/CSS/Examples/highpass.html

The Ultimate CSS Reference 408

Summary

Coping with browser differences is a way of life for the CSS practitioner. Although

filters should be avoided wherever possible, you may encounter situations in which

a design change isn’t possible or feasible, and a browser’s behavior is so problematic

that the only way you can solve the problem is to apply some sort of CSS filter.

Hacks, however, should be avoided at all costs.

Remember to use CSS filters that only target dead browsers—then you won’t be in

the situation in which a bug gets fixed and stops your CSS from working as you

expected.

Use CSS filters carefully and adopt a structured, logical approach to your CSS

management. This way, you can ensure that you recognize where and why you have

used the filters, and that you understand their implications.

Consider using conditional comments as a safe and future-proof way of addressing

all Internet Explorer versions. Make sure that the CSS files are manageable and don’t

contain unnecessary code. Keep only the changed CSS in the Internet Explorer-only

files and avoid duplicating CSS code unnecessarily.

Remember that, in most cases, workarounds, filters, and hacks can be avoided if

you take a considered approach to the page architecture using valid CSS and HTML

code. CSS is so flexible that it allows you to code the same layout in many different

ways, and often a small change in design will obviate the need for any hacks at all.

Chapter 18
Differences Between HTML
and XHTML
Even though this is a CSS reference, we should spend some time talking about

HTML and XHTML, because your choice of markup language will affect how CSS

is applied in some instances. Moreover, in order to understand the variations in the

way CSS is applied to HTML and XHTML, you need to grasp the fundamental

differences between the two markup languages.

The most important difference between the two markup languages is that HyperText

Markup Language, or HTML, is an application of SGML (Standard Generalized

Markup Language),1 and allows an author to omit certain tags and use attribute

minimization.2 The Extensible HyperText Markup Language, or XHTML, is an

application of XML (Extensible Markup Language).3 It doesn’t permit the omission

of any tags or the use of attribute minimization. However, it provides a shorthand

1 More accurately, HTML has been an application of SGML since version 2.0.
2 Attribute minimization is an SGML feature that allows us to omit the attribute name and use only

the value; for instance, we could use <input readonly> instead of <input readonly="readonly">.
3 XML is a subset of SGML.

D
ifferences Betw

een H
TM

L
and XH

TM
L

The Ultimate CSS Reference 410

notation for empty elements—for example, we could use
 instead of

</br>—which HTML does not. A conforming XML document must be well

formed, which, among other things, means that there must be an end tag for every

start tag, and that nested tags must be closed in the right order.4 When an XML

parser encounters an error relating to the document’s well-formedness, it must abort,

whereas an HTML parser is expected to attempt to recover and continue.

There are three areas in which the differences between HTML and XHTML affect

our use of CSS:

■ case sensitivity (p. 412)

■ optional tags (p. 413)

■ properties for the root element (p. 415)

Note, though, that these differences apply only when an XHTML document is served

as an application of XML; that is, with a MIME type of application/xhtml+xml,

application/xml, or text/xml. An XHTML document served with a MIME type of

text/html must be parsed and interpreted as HTML, so the HTML rules apply in

this case. A style sheet written for an XHTML document being served with a MIME

type of text/html may not work as intended if the document is then served with

a MIME type of application/xhtml+xml. For more information about MIME types,

make sure to read MIME Types (p. 411).

This can be especially important when you’re serving XHTML documents as

text/html. Unless you’re aware of the differences, you may create style sheets that

won’t work as intended if the document’s served as real XHTML.

Where the terms “XHTML” and “XHTML document” appear in the remainder of

this section, they refer to XHTML markup served with an XML MIME type. XHTML

markup served as text/html is an HTML document as far as browsers are concerned.

4 An XML document can be well-formed without being valid. Only well-formedness is a formal
requirement of XML. (Browsers use non-validating XML parsers, anyway.)

411 Differences Between HTML and XHTML

MIME Types

When a web document is requested, the web server delivers an HTTP response

comprising two parts: the headers and the body. The headers contain meta

information about the body, while the body is the actual document (the HTML or

XHTML markup, in this case).

One very important HTTP header is called Content-Type. This header specifies the

MIME type, and though it can also contain information about the character encoding

that’s used in the file, this data shouldn’t be included for XML documents. The

MIME type tells the user agent what type of content it’s about to receive.

A Content-Type header for an HTML document can look like this:

Content-Type: text/html; charset=utf-8

For an XHTML document, it should look like this:

Content-Type: application/xhtml+xml

It’s primarily the MIME type that dictates how a web document’s handled by a

browser. For an XML MIME type, the <html> tag’s xmlns attribute is what specifies

a document as containing XHTML. The doctype declaration (p. 17) has nothing to

do with this matter, except when it comes to validating the markup.

Internet Explorer doesn’t support the MIME type application/xhtml+xml. Although

it supports application/xml and text/xml, it’ll treat the document as generic XML

rather than XHTML. This is why most authors serve their XHTML markup as

text/html, yet few realize that this causes browsers to handle their pages as HTML,

rather than XHTML.

Serving XHTML as text/html is permitted by the W3C, provided that the markup

complies with the guidelines in Appendix C of the XHTML 1.0 specification.5

5 http://www.w3.org/TR/xhtml1/#guidelines

D
ifferences Betw

een H
TM

L
and XH

TM
L

http://www.w3.org/TR/xhtml1/#guidelines

The Ultimate CSS Reference 412

Case Sensitivity

CSS is case insensitive in all matters under its control; however, some things, such

as the document markup language, are beyond its control. HTML is case insensitive

in most respects, except when it comes to certain attribute values, like the id and

class attributes. XHTML, being XML, is always case sensitive.

This means that the CSS element type selectors (p. 62) for an HTML document are

case insensitive, though they’re case sensitive for XHTML, as this example shows:6

h1 {

 font-size: 150%;

}

H1 {

 color: red;

}

The first rule will apply to all level-one headings in HTML (even if the tags are

written as <H1>…</H1> in HTML) and XHTML.

The second rule will apply to all level-one headings in HTML, even if the tags are

written as <h1>…</h1>. It won’t apply to any heading element in an XHTML

document.

In attribute selectors (p. 67) for HTML documents, attribute names and some attribute

values are case insensitive, while other attribute values—most notably the attributes

id and class—are case sensitive. As these attributes are case sensitive in HTML,

ID selectors (p. 65) and class selectors (p. 63) must always match the case of the id

and class attribute values in the document. To find out which attribute values are

case sensitive and which aren’t, consult the HTML specification7.

This issue is further complicated by the fact that browser behavior is inconsistent.

For example, in Internet Explorer 6, id and class attribute values are only case

sensitive in standards mode. In Safari 3 and earlier versions, attribute selectors are

always case insensitive for HTML documents.

6 All XHTML tags and attribute names (and some values) must be written in lowercase.
7 http://www.w3.org/TR/html401/types.html#h-6.1

http://www.w3.org/TR/html401/types.html#h-6.1

413 Differences Between HTML and XHTML

Since all attribute names and values are case sensitive in XHTML, selectors are

always case sensitive.

The simplest way to mitigate any potential issues surrounding case sensitivity is

to always use lowercase for everything in your markup and CSS, where possible.

If that’s not possible, make sure the case you use is consistent between your CSS

and your document markup.

Optional Tags
The HTML specification allows us to omit some tags. Several end tags are optional,

for instance <p> and , but they don’t matter from a CSS point of view. What is

important to consider is that in HTML 4, the start tags are optional in four instances:

<html>, <head>, <body>, and <tbody>. The corresponding elements will exist in the

document object model (DOM) tree whether or not the tags are present in the markup.

It’s now considered best practice to include these tags explicitly, but an HTML

document can be valid without them.

The <html>, <head>, and <body> tags aren’t optional in XHTML; they must be

included explicitly in the markup. It’s permissible, even in XHTML, to omit the

<tbody> and <tbody> tags in simple tables, not because the tags are optional—there’s

no such thing as an optional tag in XML—but because XHTML allows two content

models for the table element type.

Whereas HTML regards the tbody element tags as optional (thereby making them

implicit), the XHTML specification states that a table must contain either one or

more tbody elements, or one or more tr elements (after any optional caption, col,

colgroup, thead, and tfoot elements).

The important difference is that, in an XHTML document, a table element that

lacks <tbody> and <tbody> tags won’t contain a tbody element node in the DOM

tree. In HTML, the tbody element will be present in the DOM tree whether or not

the tags are present.

This variation can affect our use of CSS in specific cases. Consider the following

CSS rules, which set a medium font weight for header cells in the table body

D
ifferences Betw

een H
TM

L
and XH

TM
L

The Ultimate CSS Reference 414

(presumably row headers), and a bold font for other header cells (for example, those

in a thead element):

th {

 font-weight: bold;

}

tbody th {

 font-weight: normal;

}

Now, let’s look at two different ways to write the markup for a simple table:

<table>

 <tbody>

 <tr>

 <th>Blue Widgets</th>

 <td>$12.95</td>

 <td>3 lbs</td>

 </tr>

⋮ more table rows

 </tbody>

</table>

For the table above, row headings like “Blue Widgets” will have a normal font

weight, regardless of whether the document uses HTML or XHTML, since the markup

includes explicit <tbody> and <tbody> tags.

Here’s another example; this one omits the <tbody> tags:

<table>

 <tr>

 <th>Blue Widgets</th>

 <td>$12.95</td>

 <td>3 lbs</td>

 </tr>

⋮ more table rows

</table>

The table above is a little different. In an HTML document, the row headings will

have a normal font weight: because the tbody element will be present in the DOM

tree, the second selector will match the th elements.

415 Differences Between HTML and XHTML

In an XHTML document, however, the row headings will be bold, because only the

first selector matches any th elements. Omitting the <tbody> and <tbody> tags

means that a tbody element won’t appear in the DOM tree, so the second selector

won’t match the th elements in this table.

Root Element Properties
For HTML, but not for XHTML, the CSS2.1 specification8 recommends that we

specify the document background for the body element, rather than for the html

element. If the computed value of the background property for the html element is

transparent (the initial value), any background properties specified for the body

element will be applied to the canvas (p. 141). This isn’t the case for XHTML.

The CSS2.1 specification9 also says that an overflow property declared for the body

or html elements may be applied to the viewport, but only for HTML documents.

In reality, though, browsers apply this property to the viewport for XHTML

documents too.

D
ifferences Betw

een H
TM

L
and XH

TM
L

8 http://www.w3.org/TR/CSS21/colors.html#background
9 http://www.w3.org/TR/CSS21/visufx.html#overflow

http://www.w3.org/TR/CSS21/colors.html#background
http://www.w3.org/TR/CSS21/visufx.html#overflow

Appendix A
Alphabetic Property Index

Alphabetic Property Index
This is a complete, alphabetical list of the CSS properties contained in this reference.

background . 312

background-attachment . 309

background-color . 299

background-image . 301

background-position . 305

background-repeat . 303

behavior . 387

border . 255

border-bottom . 240

border-bottom-color . 235

border-bottom-style . 236

border-bottom-width . 239

border-color . 249

The Ultimate CSS Reference 418

border-collapse . 293

border-left . 247

border-left-color . 242

border-left-style . 243

border-left-width . 246

border-right . 233

border-right-color . 228

border-right-style . 229

border-right-width . 232

border-spacing . 294

border-style . 251

border-top . 226

border-top-color . 220

border-top-style . 222

border-top-width . 224

border-width . 254

bottom . 277

caption-side . 297

clear . 271

clip . 283

color . 315

content . 348

counter-increment . 352

counter-reset . 354

cursor . 358

direction . 343

display . 264

empty-cells . 295

The expression Property Value . 388

filter . 381

float . 269

font . 325

font-family . 318

font-size . 320

font-style . 323

font-variant . 324

font-weight . 321

height . 188

left . 278

letter-spacing . 326

line-height . 328

Alphabetic Property Index
419 Alphabetic Property Index

list-style . 290

list-style-image . 289

list-style-position . 288

list-style-type . 286

margin . 209

margin-bottom . 205

margin-left . 207

margin-right . 202

margin-top . 200

max-height . 192

max-width . 198

min-height . 190

min-width . 196

-moz-border-radius . 372

-moz-box-sizing . 375

The display Property Value: -moz-inline-box 377

orphans . 365

outline . 261

outline-color . 258

The Ultimate CSS Reference 420

outline-style . 259

outline-width . 260

overflow . 280

padding . 218

padding-bottom . 215

padding-left . 216

padding-right . 213

padding-top . 212

page-break-after . 364

page-break-before . 362

page-break-inside . 363

position . 267

quotes . 355

right . 276

table-layout . 292

text-align . 330

text-decoration . 332

text-indent . 334

text-shadow . 337

text-transform . 335

top . 275

unicode-bidi . 344

vertical-align . 338

visibility . 273

white-space . 341

widows . 366

width . 194

word-spacing . 327

z-index . 279

zoom . 380

	The Ultimate CSS Reference
	Table of Contents
	What Is CSS?
	CSS Versions
	Linking CSS to a Web Document
	Media Queries

	Standards Mode, Quirks Mode, and Doctype Sniffing
	Summary

	General Syntax and Nomenclature
	Statements
	At-rules
	Rule Sets
	Selectors
	Declaration Blocks
	Declarations, Properties, and Values
	Keywords
	Lengths and Units
	Percentages
	Colors
	Numbers
	Strings
	URIs
	Initial Values
	Shorthand Properties

	CSS Comments
	CSS Identifiers
	CSS Escape Notation
	CSS Syntax Errors
	Summary

	At-rules Reference
	@charset
	@import
	@media
	@page
	@font-face
	@namespace

	Selector Reference
	Universal Selector
	Element Type Selector
	Class Selector
	ID Selector
	Attribute Selector
	CSS3 Attribute Selectors

	Selector Grouping
	Combinators
	Descendant Selector
	Child Selector
	Adjacent Sibling Selector
	General Sibling Selector

	Pseudo-classes
	:link
	:visited
	:active
	:hover
	:focus
	:first-child
	:lang(C)
	CSS3 Pseudo-classes
	:nth-child(N)
	:nth-last-child(N)
	:nth-of-type(N)
	:nth-last-of-type(N)
	Understanding :nth-child Pseudo-class Expressions
	:last-child
	:first-of-type
	:last-of-type
	:only-child
	:only-of-type
	:root
	:empty
	:target
	:enabled
	:disabled
	:checked Pseudo-class
	:not(S)

	Pseudo-elements
	:first-letter
	:first-line
	:before
	:after
	::selection

	The Cascade, Specificity, and Inheritance
	The Cascade
	!important Declarations
	Specificity
	Inheritance
	The CSS Property Value inherit

	Summary

	CSS Layout and Formatting
	The Viewport, the Page Box, and the Canvas
	The CSS Box Model
	Containing Block
	Collapsing Margins
	The Internet Explorer 5 Box Model
	The Internet Explorer hasLayout Property

	Formatting Concepts
	Block Formatting
	Inline Formatting
	List Formatting
	Table Formatting
	Replaced Elements

	Positioning
	Relative Positioning
	Absolute Positioning
	Fixed Positioning
	Stacking Contexts
	Floating and Clearing
	The Relationship Between display, position, and float

	Summary

	Box Properties
	Dimensions
	height
	min-height
	max-height
	width
	min-width
	max-width

	Margins
	margin-top
	margin-right
	margin-bottom
	margin-left
	margin

	Padding
	padding-top
	padding-right
	padding-bottom
	padding-left
	padding

	Borders and Outlines
	border-top-color
	border-top-style
	border-top-width
	border-top
	border-right-color
	border-right-style
	border-right-width
	border-right
	border-bottom-color
	border-bottom-style
	border-bottom-width
	border-bottom
	border-left-color
	border-left-style
	border-left-width
	border-left
	border-color
	border-style
	border-width
	border
	outline-color
	outline-style
	outline-width
	outline

	Layout Properties
	display
	position
	float
	clear
	visibility
	top
	right
	bottom
	left
	z-index
	overflow
	clip

	List Properties
	list-style-type
	list-style-position
	list-style-image
	list-style

	Table Properties
	table-layout
	border-collapse
	border-spacing
	empty-cells
	caption-side

	Color and Backgrounds
	background-color
	background-image
	background-repeat
	background-position
	background-attachment
	background
	color

	Typographical Properties
	font-family
	font-size
	font-weight
	font-style
	font-variant
	font
	letter-spacing
	word-spacing
	line-height
	text-align
	text-decoration
	text-indent
	text-transform
	text-shadow
	vertical-align
	white-space
	direction
	unicode-bidi

	Generated Content
	content
	counter-increment
	counter-reset
	quotes

	User Interface Properties
	cursor

	Paged Media Properties
	page-break-before
	page-break-inside
	page-break-after
	orphans
	widows

	Vendor-specific Properties
	Mozilla Extensions
	-moz-border-radius
	-moz-box-sizing
	The display Property Value: -moz-inline-box

	Internet Explorer Extensions
	zoom
	filter
	behavior
	The expression Property Value

	Summary

	Workarounds, Filters, and Hacks
	Internet Explorer Conditional Comments
	Workarounds and Filters
	CSS Hacks
	Summary

	Differences Between HTML and XHTML
	MIME Types
	Case Sensitivity
	Optional Tags
	Root Element Properties

	Alphabetic Property Index

